150 research outputs found

    von Neuman algebras of strongly connected higher-rank graphs

    Get PDF
    We investigate the factor types of the extremal KMS states for the preferred dynamics on the Toeplitz algebra and the Cuntz--Krieger algebra of a strongly connected finite kk-graph. For inverse temperatures above 1, all of the extremal KMS states are of type I∞_\infty. At inverse temperature 1, there is a dichotomy: if the kk-graph is a simple kk-dimensional cycle, we obtain a finite type I factor; otherwise we obtain a type III factor, whose Connes invariant we compute in terms of the spectral radii of the coordinate matrices and the degrees of cycles in the graph.Comment: 16 pages; 1 picture prepared using TikZ. Version 2: this version to appear in Math. An

    Extensions of C*-dynamical systems to systems with complete transfer operators

    Full text link
    Starting from an arbitrary endomorphism α\alpha of a unital C*-algebra AA we construct a bigger C*-algebra BB and extend α\alpha onto BB in such a way that the extended endomorphism α\alpha has a unital kernel and a hereditary range, i.e. there exists a unique non-degenerate transfer operator for (B,α)(B,\alpha), called the complete transfer operator. The pair (B,α)(B,\alpha) is universal with respect to a suitable notion of a covariant representation and depends on a choice of an ideal in AA. The construction enables a natural definition of the crossed product for arbitrary α\alpha.Comment: Compressed and submitted version, 9 page

    Resource heterogeneity and foraging behaviour of cattle across spatial scales

    Get PDF
    BackgroundUnderstanding the mechanisms that influence grazing selectivity in patchy environments is vital to promote sustainable production and conservation of cultivated and natural grasslands. To better understand how patch size and spatial dynamics influence selectivity in cattle, we examined grazing selectivity under 9 different treatments by offering alfalfa and fescue in patches of 3 sizes spaced with 1, 4, and 8 m between patches along an alley. We hypothesized that (1) selectivity is driven by preference for the forage species that maximizes forage intake over feeding scales ranging from single bites to patches along grazing paths, (2) that increasing patch size enhances selectivity for the preferred species, and that (3) increasing distances between patches restricts selectivity because of the aggregation of scale-specific behaviours across foraging scales.ResultsCows preferred and selected alfalfa, the species that yielded greater short-term intake rates (P < 0.0001) and greater daily intake potential. Selectivity was not affected by patch arrangement, but it was scale dependent. Selectivity tended to emerge at the scale of feeding stations and became strongly significant at the bite scale, because of differences in bite mass between plant species. Greater distance between patches resulted in longer patch residence time and faster speed of travel but lower overall intake rate, consistent with maximization of intake rate. Larger patches resulted in greater residence time and higher intake rate.ConclusionWe conclude that patch size and spacing affect components of intake rate and, to a lesser extent, the selectivity of livestock at lower hierarchies of the grazing process, particularly by enticing livestock to make more even use of the available species as patches are spaced further apart. Thus, modifications in the spatial pattern of plant patches along with reductions in the temporal and spatial allocation of grazing may offer opportunities to improve uniformity of grazing by livestock and help sustain biodiversity and stability of plant communities

    Diet switching by mammalian herbivores in response to exotic grass invasion.

    Get PDF
    Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets

    Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem

    Get PDF
    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes ( Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2= 0.79, n = 66, P \u3c 0.0001). Inclusion of evapotranspiration in the predictive equation led to improved predictions of Fday (R2= 0.82, n = 66, P \u3c 0.0001). Cross-validation indicated that regression tree predictions of Fday were prone to overfitting and that linear regression models were more robust. Multiple regression and regression tree models predicted Rn quite well (R2 = 0.75–0.77, n = 66) with the regression tree model being slightly more robust in cross-validation. Temporal mapping of Fday and Rn is possible with these techniques and would allow the assessment of NEE in sagebrush–steppe ecosystems. Simulations of periodic Fday measurements, as might be provided by a mobile flux tower, indicated that such measurements could be used in combination with iNDVI to accurately predict Fday. These periodic measurements could maximize the utility of expensive flux towers for evaluating various carbon management strategies, carbon certification, and validation and calibration of carbon flux models

    Comportamento ingestivo de bovinos de corte em pastagem natural com diferentes níveis de intensificação.

    Get PDF
    O conhecimento do comportamento alimentar de ruminantes mantidos em pastagens pode melhorar pråticas de manejo, possibilitando melhores respostas produtivas animais e vegetais.Claudia Cristina Gulias Gomes, editora técnica

    Nutritional correlates of koala persistence in a low-density population

    Get PDF
    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.IW and WF received a grant from New South Wales (NSW) Department of Environment, Climate Change & Water
    • 

    corecore