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VON NEUMANN ALGEBRAS OF STRONGLY CONNECTED HIGHER-RANK

GRAPHS

MARCELO LACA, NADIA S. LARSEN, SERGEY NESHVEYEV, AIDAN SIMS, AND SAMUEL B.G. WEBSTER

Abstract. We investigate the factor types of the extremal KMS states for the preferred dynamics on
the Toeplitz algebra and the Cuntz–Krieger algebra of a strongly connected finite k-graph. For inverse
temperatures above 1, all of the extremal KMS states are of type I∞. At inverse temperature 1,
there is a dichotomy: if the k-graph is a simple k-dimensional cycle, we obtain a finite type I factor;
otherwise we obtain a type III factor, whose Connes invariant we compute in terms of the spectral
radii of the coordinate matrices and the degrees of cycles in the graph.

1. Introduction

The C∗-algebras of strongly connected finite higher-rank graphs provide interesting higher-rank
analogues of Cuntz–Krieger algebras. In this paper we study von Neumann algebras generated
by these C∗-algebras in the representations defined by the extremal KMS states for the preferred
dynamics studied in [13]. Results of Enomoto, Fujii and Watatani [6] show that when k = 1 and the
graph is not a simple cycle, there is a unique KMS state and the associated factor is of type IIIρ(A)−p ,
where ρ(A) is the spectral radius of the adjacency matrix A of the graph, and p is the period of the
graph in the sense of Perron-Frobenius theory: the greatest common divisor of the lengths of cycles
in the graph.

In the higher-rank case there can be more than one KMS state, and a complete classification
of such states has been recently obtained in [13]. Specifically, Theorem 7.1 of [13] shows that the
extremal KMS states of the C∗-algebra C∗(Λ) of a finite strongly connected k-graph Λ are indexed
by the characters of an associated subgroup Per Λ of Zk, whose group C∗-algebra embeds as a
central subalgebra of C∗(Λ). The goal of the present paper is to determine the types of these KMS
states. Using Feldman–Moore theory [8] and the groupoid description of a k-graph algebra, we
obtain a very satisfactory generalisation of Enomoto, Fujii and Watatani’s result. Namely, suppose
that Λ is not a simple k-dimensional cycle. We define PΛ to be the subgroup of Zk generated
by the degrees of cycles in Λ. The k coordinate graphs of Λ determine integer matrices Ai. The
vector ρ(Λ) = (ρ(A1), . . . , ρ(Ak)) of spectral radii of these matrices determines a homomorphism
n 7→ ρ(Λ)n of PΛ into the multiplicative group of positive reals. We prove that the closure of its
image is the Connes spectrum of the type III factor obtained from any of the extremal KMS states
of C∗(Λ) described in [13]. We also determine the types of the factors arising from KMS states on
the Toeplitz algebra that do not factor through C∗(Λ), and from KMS states of C∗(Λ) when Λ is a
simple k-dimensional cycle. An interesting corollary is that the factors obtained from a k-graph Λ
depend only on its skeleton, and are independent of the factorisation property.

In the case when Λ is primitive and aperiodic — or equivalently, when PΛ = Zk and Per Λ = 0
— the unique KMS state ϕ is the most natural state on C∗(Λ): it is the unique gauge-invariant
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state whose restriction to the AF core of C∗(Λ) is tracial. By our result, the Connes spectrum
of the associated factor is then the closure of the multiplicative group generated by the spectral
radii ρ(Ai) of the connectivity matrices Ai. In some special cases this has been already established
by Yang [24, 25]. She studied C∗-algebras and von Neumann algebras of aperiodic k-graphs with
a single vertex — the higher-rank analogues of Cuntz algebras. Under the technical condition that
the so-called “intrinsic group” of the graph has rank at most 1, she proved that ϕ is a factor state
of type III with Connes spectrum equal to the closure of the multiplicative group generated by the
numbers m1, . . . ,mk of edges of each of the k minimal degrees. This generalises Olesen and Ped-
ersen’s result [21] that the unique KMS state for the gauge-action on the Cuntz algebra On is a
type III1/n factor state. Yang’s result completely resolved the situation for aperiodic single-vertex
2-graphs. She then asked whether the result remains true for all single-vertex k-graphs, regardless
of the intrinsic group. A special case of our main theorem implies that this is indeed the case, under
the sole assumption of aperiodicity.

The paper is organised as follows. We introduce necessary background about k-graphs and their
C∗-algebras in Section 2. In Section 3, we state our main result, Theorem 3.1, and begin the proof by
analysing the factors arising from KMS states at large inverse temperatures. These are all type I∞
states and the associated von Neumann factors each have a canonical presentation as B(`2(Λv)) for
some v ∈ Λ0.

In Section 4 we present a computation of the Connes invariant S(W ∗(Q)) of the von Neumann
algebra of an ergodic countable equivalence relation Q with a quasi-invariant measure µ. Corol-
lary 4.2 says that if the sub-relation QD defined by the kernel of the Radon–Nikodym cocycle of µ
is ergodic, then S(W ∗(Q)) is precisely the essential range of the Radon–Nikodym cocycle. These
results are surely known, but we give a self-contained treatment in lieu of an explicit reference.

In Section 5 we apply groupoid methods to study the factors associated to the extremal KMS
states of C∗(Λ). The groupoid model G for C∗(Λ) [15] determines a Borel equivalence relation R on
the path space Λ∞. The unique probability measure µeq on Λ∞ induced by all KMS states of C∗(Λ)
(see [13, Proposition 8.1]) is quasi-invariant with respect to R. The key result, Proposition 5.2,
says that W ∗(R) is isomorphic to the factor determined by any extremal KMS state of C∗(Λ);
this isomorphism is noncanonical unless Λ is aperiodic. We finish the section by proving that the
sub-relation RD obtained from R as in the preceding paragraph contains a still smaller relation Rγ
which is an étale topological equivalence relation whose C∗-algebra is the AF core of C∗(Λ).

In Section 6, we develop a Frobenius analysis of strongly connected higher-rank graphs. We
investigate the group PΛ ⊆ Zk generated by the degrees d(λ) of cycles in Λ. We show that there is
a map C : Λ0 × Λ0 → Zk/PΛ such that C(r(λ), s(λ)) = d(λ) + PΛ for all λ. The key result of the
section, Proposition 6.5, says that there is a strictly positive p ∈ PΛ with the following property:
C(v, w) = 0 if and only if there is a path of degree p connecting v to w. We also show that the
relation ∼ given by v ∼ w if and only if C(v, w) = 0 is an equivalence relation on Λ0. We deduce that
there exists a natural free and transitive action of Zk/PΛ on Λ0/∼, and that the decomposition of

RΛ0
into direct summands indexed by Λ0/∼ is a system of imprimitivity for the connectivity matrices

Ai. We also deduce that PΛ always contains the periodicity group Per Λ of [3, 13], with equality if
and only if Λ is a simple k-dimensional cycle (see Proposition 6.9).

Finally, in Section 7, we prove our main theorem. We show that the AF core of C∗(Λ) decomposes
as a direct sum with summands indexed by Λ0/∼. Corollary 7.2 shows that the ergodic components
of Rγ are the sets Xω of infinite paths with range in ω ∈ Λ0/∼. Each characteristic function 1Xω
is a full projection in W ∗(R), so the type of W ∗(R) coincides with that of W ∗(R|Xω); we compute
the latter using the results of Section 4. We briefly discuss the relationship between our results and
Yang’s, and show that the factorisation property in Λ does not affect the factors that arise from it.
We conclude by applying our main theorem to a few illustrative examples.
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2. Higher-rank graphs

We denote by N the monoid {0, 1, 2, . . . } of nonnegative integers under addition. For an integer
k ≥ 1, we then regard Nk as a monoid with pointwise addition. The canonical generators of Nk are
denoted ei, and for n ∈ Nk we write ni for its ith coordinate. We give Nk its natural partial order
m ≤ n if and only if each mi ≤ ni and m ∨ n denotes the coordinatewise maximum of m,n ∈ Nk.

A rank-k graph, or a k-graph, is a small category Λ together with an assignment of a degree
d(λ) ∈ Nk to every morphism λ ∈ Λ such that

(1) d(λµ) = d(λ) + d(µ); and
(2) whenever d(λ) = m + n, there is a unique factorisation λ = µν such that d(µ) = m and

d(ν) = n.

Condition (2) is often called the “factorisation property.” It implies in particular that the only
morphisms of degree 0 are the identity morphisms.

The set of morphisms of degree n ∈ Nk is denoted by Λn. Its elements are called paths of degree n
in Λ. So Λ0 is the set of identity morphisms; we regard them interchangeably as paths of degree
zero and as vertices. We also identify Λ0 with the set of objects of Λ in the natural way, so that
the codomain and domain maps become functions r, s : Λ→ Λ0. Throughout the paper we consider
only finite k-graphs, meaning that each |Λn| <∞.

For µ ∈ Λ and n ∈ Nk, denote by µΛn the set of morphisms µλ such that d(λ) = n and s(µ) = r(λ).
The sets Λnν and µΛnν are defined similarly.

The connectivity matrices A1, . . . , Ak ∈ MatΛ0(N) of Λ are given by

Ai(v, w) = |vΛeiw|.
The factorisation property implies that the matrices Ai pairwise commute. For n ∈ Nk, we define

An :=
∏k
i=1A

ni
i . (2.1)

We then have An(v, w) = |vΛnw| for all v, w, and n 7→ An is a semigroup homomorphism. We
write ρ(B) for the spectral radius of a square matrix B. Define

ρ(Λ) := (ρ(A1), ρ(A2), . . . , ρ(Ak)) ∈ [0,∞)k.

For g ∈ Zk we write ρ(Λ)g for the product
∏k
i=1 ρ(Ai)

gi .
A finite k-graph Λ is strongly connected if vΛw 6= ∅ for all v, w ∈ Λ0. If there exists p such that

vΛpw 6= ∅ for all v and w, then Λ is called primitive.
When working with strongly connected k-graphs, there is no loss of generality in assuming that Λn

is nonempty for every n ∈ Nk, and it is then not difficult to check (see [13, Lemma 2.1] and the
paragraph before it) that

vΛn 6= ∅ and Λnv 6= ∅ for all v ∈ Λ0 and n ∈ Nk. (2.2)

So each column and each row of each An is nonzero. It then follows from [13, Corollary 4.2] and
[11, Lemma A.1] that each ρ(An) ≥ 1 and that n 7→ ρ(An) is a homomorphism of Nk into the
multiplicative semigroup [1,∞). Hence ρ(An) = ρ(Λ)n for all n.

The Toeplitz algebra T C∗(Λ) of the k-graph Λ is the universal C∗-algebra generated by elements
{tλ | λ ∈ Λ} such that

(TCK1) {tv | v ∈ Λ0} is a family of mutually orthogonal projections;
(TCK2) tµtν = tµν whenever s(µ) = r(ν);
(TCK3) t∗µtµ = ts(µ) for all µ;

(TCK4) tv ≥
∑

µ∈vΛn tµt
∗
µ for all v ∈ Λ0 and n ∈ Nk; and

(TCK5) t∗µtν =
∑

µα=νβ∈Λd(µ)∨d(ν) tαt
∗
β for all µ, ν.

The C∗-algebra C∗(Λ) of Λ is the quotient of T C∗(Λ) by the ideal generated by {tv −
∑

µ∈vΛn tµt
∗
µ |

v ∈ Λ0, n ∈ Nk}. It is universal for families {sλ | λ ∈ Λ} satisfying (TCK1)–(TCK3) and

(CK) sv =
∑

µ∈vΛn sµs
∗
µ for all v, n.
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3. The main result, and the factor types of KMS states on the Toeplitz algebra

Let Λ be a strongly connected finite k-graph. Our main result is a characterisation of the factor
types of the extremal KMS states of T C∗(Λ) and C∗(Λ) studied in [13]. Each r ∈ [0,∞)k deter-

mines an action αr : R → Aut T C∗(Λ) by αrt (tλ) = eitr·d(λ)tλ, and this descends to an action, also
denoted αr, on C∗(Λ). Corollary 4.6 of [13] shows that, up to rescaling, the only value of r for
which αr admits a KMS state that factors through C∗(Λ) is r = log ρ(Λ). We write an unadorned α
for this dynamics, and call it the “preferred dynamics”. Corollary 4.6 of [13] also shows that there
are α-KMSβ states for all β ≥ 1, and the only ones that factor through C∗(Λ) occur at β = 1. Given
a state φ, we write πφ for the associated GNS representation.

Theorem 3.1. Let Λ be a strongly connected finite k-graph. Let α be the preferred dynamics and
suppose that φ is an extremal α-KMSβ state of T C∗(Λ).

(1) Suppose that β > 1. Then πφ(T C∗(Λ))′′ is the type I∞ factor.

(2) Suppose that β = 1, and write φ for the corresponding KMS state of C∗(Λ).
(a) If ρ(Λ) = (1, . . . , 1), then πφ(T C∗(Λ))′′ = πφ(C∗(Λ)) is the type I|Λ0| factor.

(b) Otherwise, let

S := {ρ(Λ)d(µ)−d(ν) | µ, ν ∈ Λ are cycles},

and let λ := sup{s ∈ S | s < 1}. Then λ ∈ (0, 1] and πφ(T C∗(Λ))′′ = πφ(C∗(Λ))′′ is the

injective type IIIλ factor.

The rest of the paper mainly consists of the proof of Theorem 3.1, which will be completed in
Section 7. Most of the work lies in statement (2b); in particular, (1) is fairly straightforward, and
the proof works for any αr and any β with βr > log ρ(Λ) coordinatewise.

Theorem 6.1 of [12] describes KMS states of T C∗(Λ) as follows. Take r ∈ [0,∞)k and β ∈ R
such that βr > log ρ(Λ) coordinatewise. Then for each v, the series

∑
µ∈Λv e

−βr·d(µ) converges to

some yv ≥ 1. Set y = (yv)v∈Λ0 . For each ε ∈ [0,∞)Λ0
such that ε · y = 1, define ∆: Λ → R+

by ∆λ = e−βr·d(λ)εs(λ). Let {hλ | λ ∈ Λ} be the orthonormal basis for `2(Λ), and πS : T C∗(Λ) →
B(`2(Λ)) the path-space representation πS(tλ)hµ = δs(λ),r(µ)hλµ [22, Example 7.7]. Then the formula
ϕε(a) =

∑
λ∈Λ ∆λ(πS(a)hλ|hλ) defines an α-KMSβ state ϕε of T C∗(Λ). Moreover, putting mε :=∏k

i=1(1 − e−βriAi)−1ε, we have ϕε(tµt
∗
ν) = δµ,νe

−βr·d(µ)mε
s(µ) for all µ, ν. The map ε 7→ ϕε from

Σβ = {ε ∈ [0,∞)Λ0 | ε · y = 1} to the simplex of α-KMSβ states of T C∗(Λ) is an affine isomorphism.
The simplex Σβ is the closed convex hull of {y−1

v δv | v ∈ Λ0}.

Proposition 3.2. Let Λ be a strongly connected finite k-graph. Suppose that r ∈ [0,∞)k and β > 0

satisfy βr > log ρ(Λ) coordinatewise. Fix v ∈ Λ0 and let ε := y−1
v δv ∈ [0,∞)Λ0

. Let πε := πϕε be the
GNS representation associated to the KMSβ state ϕε. Then πε(T C∗(Λ))′′ is a factor of type I∞, and
πε(tµ) 7→ πS(tµ)|`2(Λv) determines a von Neumann algebra isomorphism πε(T C∗(Λ))′′ ∼= B(`2(Λv)).

Proof. By [12, Theorem 6.1], the state ϕε is an extremal point in the simplex of KMSβ states. Hence
πε(T C∗(Λ))′′ is a factor (see, for example [2, Theorem 5.3.30(3)]).

Let qv :=
∏k
i=1(tv −

∑
γ∈vΛei tγt

∗
γ). We have πS(qv)hv = hv, and for µ ∈ Λ \ vΛ we have

qv ≤ tv ⊥ tr(µ) giving πS(qv)hµ = 0. For µ ∈ vΛ \ {v}, we have µ = µ1µ
′ for some µ1 ∈

⋃
i vΛei ,

and then πS(tv − tµ1t
∗
µ1

)hµ = 0, forcing πS(qv)hµ = 0. Hence πS(qv) is the projection onto Chv, and
πS(qvT C∗(Λ)qv) = CπS(qv). Since πS is faithful by [22, Corollary 7.7], we then have qvT C∗(Λ)qv =
Cqv, and hence πε(qv)πε(T C∗(Λ))′′πε(qv) = Cπε(qv). Thus πε(qv) is either a minimal projection or
zero. Since ε = y−1

v δv, we have

ϕε(qv) =
∑

λ∈Λ ∆λ(πS(qv)hλ | hλ) = ∆v = e−βr·d(v)εv = y−1
v > 0. (3.1)

Hence πε(qv) 6= 0, and so πε(T C∗(Λ))′′ has a minimal projection πε(qv), and is therefore of type I.
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For λ ∈ Λv, let ξλ denote the class of
√
yvtλqv in the GNS space Hε of ϕε. For λ, µ ∈ Λv, we have(

ξλ | ξµ
)
Hε = yvϕε(qvt

∗
µtλqv) = yv

∑
(γ,γ′)∈Λmin(µ,λ)

ϕε(qvtγt
∗
γ′qv)

= yv
∑

(γ,γ′)∈Λmin(µ,λ)

ϕε(δv,γδv,γ′qv)

= yvδλ,µδs(λ),v ϕε(qv) = δλ,µδs(λ),v

by (3.1). So {ξλ | λ ∈ Λv} is an infinite orthonormal set in Hε. Define H := span{ξλ | λ ∈ Λv}. For
λ ∈ Λv and µ, ν ∈ Λ, we have

πε(tµt
∗
ν)ξλ =

√
yv[tµt

∗
νtλqv] =

√
yv

[ ∑
(γ,γ′)∈Λmin(ν,λ)

tµγ(qvtγ′)
∗
]
.

We have πS(tγ′)`
2(Λ) = span{hγ′λ | λ ∈ s(γ′)Λ}, which is orthogonal to πS(qv)`

2(Λ) = Cδv unless

γ′ = v. Since πS is injective, we deduce that πε(tµt
∗
ν)ξλ is zero unless λ = νλ′ and Λmin(ν, λ) =

{(λ′, v)}, giving πε(tµt
∗
ν)ξλ = ξµλ′ ∈ H. So H is invariant for πε(T C∗(Λ)), and hence also for its

double commutant. Since πε(T C∗(Λ))′′ is a factor, it follows that the restriction map T → T |H is a
von Neumann algebra isomorphism.

For µ, ν ∈ Λv, we have πε(tµqvt
∗
ν)ξλ = δν,λξµ, and so πε(tµqvt

∗
ν) is the rank-one operator θξµ,ξν .

So K(H) ⊆ πε(T C∗(Λ)), giving πε(T C∗(Λ))′′|H = B(H). The formula U : ξλ 7→ hλ defines a unitary
isomorphism H ∼= `2(Λv), and we have Uπε(tµ)|HU∗ = πS(tµ). �

4. The Connes invariant of the von Neumann algebra of an equivalence relation

Our analysis of the types of extremal KMS states on the C∗-algebra of a k-graph will rely on iden-
tifying the associated factor with the von Neumann algebra of the equivalence relation determined
by the k-graph groupoid. Computing the Connes invariant S of a factor is in general a difficult prob-
lem; but it simplifies drastically in the presence of a faithful normal state ϕ with factorial centraliser.
In this instance, Connes’ result [4, Théorème 3.2.1] implies that S is equal to the spectrum of the
modular operator for ϕ. In this section we describe what this result says for von Neumann algebras
of equivalence relations; this result is surely known, but we provide a proof as we were unable to
find a reference.

Let us review Feldman and Moore’s construction of the von Neumann algebra W ∗(Q) of a count-
able Borel equivalence relation Q on a space X and a quasi-invariant measure µ on X (see [7,
Section 2] and [8, Section 2]). Recall that a Borel equivalence relation Q on a standard Borel space
X is said to be countable if {y | (x, y) ∈ Q} is countable for each x ∈ X. A Borel measure µ on X
is quasi-invariant for Q if, whenever µ(A) = 0, the Q-saturation Q(A) :=

⋃
x∈A{y | (x, y) ∈ Q} of

A is also µ-null. Equip Q with the left counting measure ν:

ν(C) =

∫
X

∣∣{y | (x, y) ∈ C}
∣∣ dµ(x) for Borel C ⊆ Q.

(Unlike Feldman and Moore, we work with left counting measure, not right, as this is consistent with
Renault’s representation theory of groupoids.) Identifying the diagonal of Q with X via (x, x) 7→ x,
the restriction of ν to the diagonal coincides with µ. A Borel subset A of Q is called a bisection if
the projection maps (x, y) 7→ x and (x, y) 7→ y are injective on A. Consider the ∗-algebra C[Q] of
functions f ∈ L∞(Q, ν) supported on finitely many Borel bisections of Q, under the convolution

(f1 ∗ f2)(x, z) =
∑

(x,y)∈Q

f1(x, y)f2(y, z)



6 LACA, LARSEN, NESHVEYEV, SIMS, AND WEBSTER

and involution f∗(x, y) = f(y, x). Write D for the Radon–Nikodym cocycle on Q determined by µ.
Then C[Q] has a representation π on L2(Q, dν) given by

(π(f)ξ)(x, z) =
∑

(x,y)∈Q

D(x, y)−1/2f(x, y)ξ(y, z), (4.1)

and by definition, W ∗(Q) = π(C[Q])′′. The characteristic function 1{(x,x)|x∈X} is a cyclic separating
vector for W ∗(Q), so the formula

ϕ(f) =

∫
X
f(x, x)dµ(x) for f ∈ C[Q] (4.2)

defines a faithful normal state ϕ of W ∗(Q).

Proposition 4.1. Let Q be a countable measurable equivalence relation on a standard Borel space
(X,µ) with Radon–Nikodym cocycle D. Let QD denote the finer equivalence relation

x ∼QD y if and only if x ∼Q y and D(x, y) = 1.

Identify W ∗(QD) with the strong-operator closure of the subalgebra

{π(f) | f ∈ C[Q], supp(f) ⊆ QD} ⊂W ∗(Q).

Then W ∗(QD) is equal to the centraliser of the state ϕ on W ∗(Q) defined by (4.2).

Proof. Let M := W ∗(Q) and N := W ∗(QD) ⊆M . Let ν denote left counting measure on Q, and let
ξ := 1{(x,x)|x∈X} ∈ L2(Q, dν); so ϕ is the vector state associated to ξ. Let ∆ be the modular operator

for ϕ. Then [8, Proposition 2.8] implies that ∆ is given by multiplication by D on L2(Q, dν). Hence
the eigenspace of ∆ corresponding to the eigenvalue 1 is L2(QD, dν), which is precisely Nξ.

Hence N is contained in the centraliser Mϕ of ϕ and Nξ = Mϕξ. In particular, N is invariant
under the modular group. So there is a unique ϕ-preserving conditional expectation E : M → N .
Let p be the projection onto Nξ. For a ∈ M we have E(a)ξ = paξ. Hence, if a ∈ Mϕ, then
E(a)ξ = paξ = aξ, so a = E(a) ∈ N . Thus N = Mϕ. �

Corollary 4.2. Let Q, D : Q → (0,∞) and QD be as in Proposition 4.1. If QD is ergodic on
(X,µ), then the Connes invariant S(W ∗(Q)) is the essential range of D.

Proof. Since QD is ergodic, Proposition 4.1 implies that the centraliser of ϕ is a factor. So [4,
Théorème 3.2.1] shows that S(W ∗(Q)) is equal to the spectrum of the operator of multiplication
by D on L2(Q, dν). Since this spectrum is exactly the essential range of D, the result follows. �

Remark 4.3. An alternative proof of Corollary 4.2 is as follows. First apply [8, Proposition 2.11],
to see that S(W ∗(Q)) is equal to the ratio set of D, and then argue directly from its definition that
this coincides with the essential range when QD is ergodic.

In our application the equivalence relation will arise as the orbit equivalence relation defined by
the action of a groupoid on its unit space. For the convenience of the reader, we record the following
useful relation between the two Radon–Nikodym cocycles arising in this situation.

Lemma 4.4. Let G be a second countable étale groupoid and let µ be a quasi-invariant measure
on G0 with Radon–Nikodym cocycle c : G → (0,∞). Consider the orbit equivalence relation Q defined
by G on G0. Then the measure µ is quasi-invariant with respect to Q, and if D : Q → (0,∞) is the
corresponding Radon–Nikodym cocycle, then there exists a Q-invariant µ-conull Borel subset X ⊆ G0

such that D(x, y) = c(g) for all (x, y) ∈ Q ∩ (X ×X) and g ∈ Gxy := {g ∈ G | x = r(g), y = s(g)}.

Proof. Choose a countable cover {Vn}∞n=1 of G by open bisections; that is, open sets Vn on which r
and s are injective. For each n define Tn : r(Vn) → s(Vn) by Tn(r(g)) = s(g) for g ∈ Vn. By
quasi-invariance of µ for G, the Tn preserve the measure class of µ and

d(Tn)∗µ
dµ (s(g)) = c(g) for g ∈ Vn.
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So if µ(A) = 0, then µ
(⋃

n T
−1
n (A)

)
= 0 too. Since

⋃
n T
−1
n (A) is precisely the Q-saturation of A,

the measure µ is quasi-invariant for Q.
By Proposition 2.2 of [7] applied to the Borel isomorphism Tn : r(Vn) → s(Vn) with graph in Q,

there is a µ-null Yn ⊆ r(Vn) such that for g ∈ Vn \ r−1(Yn), we have

D(r(g), s(g)) = D(T−1
n (s(g)), s(g)) =

d(Tn)∗µ

dµ
(s(g)) = c(g).

Now Y :=
⋃
n Yn is µ-null, so its Q-saturation Q(Y ) is µ-null and Q-invariant. Thus X := G0 \Q(Y )

suffices. �

Remark 4.5. As a byproduct we see that for µ-a.e. x ∈ G0 we have c(g) = 1 for all g ∈ Gxx , since
D(x, x) = 1 for µ-a.e. x.

5. Equivalence relations and KMS states of C∗(Λ)

We will now use the groupoid picture for the C∗-algebra of a strongly connected finite k-graph.
We briefly recount the construction of the groupoid G associated to a k-graph Λ and refer to [15] or
Section 12 of [13] for more details.

The unit space of G is the space Λ∞ of infinite paths in Λ, which is defined as follows. Let Ωk

denote the k-graph with objects Nk, morphisms {(m,n) ∈ Nk × Nk | m ≤ n}, structure maps
r(m,n) = m, s(m,n) = n and d(m,n) = n −m, and composition (m,n)(n, p) = (m, p). Then an
infinite path x ∈ Λ∞ is a degree-preserving functor Ωk → Λ.

For n ∈ Nk denote by σn the shift on Λ∞ corresponding to n, so σn(x)(p, q) = x(p + n, q + n).
Then, as a set,

G = {(x, g, y) ∈ Λ∞ × Zk × Λ∞ | σg+n(x) = σn(y) for some n ∈ Nk}.

The source and range maps are s(x, g, y) = y and r(x, g, y) = x, and composition is

(x, g, y)(y, h, z) = (x, g + h, z).

For x ∈ Λ∞ and µ ∈ Λ with r(x) := x(0, 0) = s(µ), there is a unique µx ∈ Λ∞ such that

(µx)(0, d(µ)) = µ and σd(µ)(µx) = x. The sets Z(µ, ν) = {(µx, d(µ) − d(ν), νx) | x ∈ Λ∞, s(µ) =
s(ν) = r(x)} indexed by pairs µ, ν ∈ Λ form a basis of compact open sets for the topology.

There is an isomorphism C∗(Λ) ∼= C∗(G) that carries each sλ to 1Z(λ,s(λ)). The preferred dynam-
ics α on C∗(Λ) = C∗(G) corresponds to the cocycle c : G → R given by

c(x, g, y) = g · log ρ(Λ).

That is, for f ∈ Cc(G) ⊂ C∗(G) we have

αt(f)(x, g, y) = eitc(x,g,y)f(x, g, y) = ρ(Λ)itgf(x, g, y)

for all t ∈ R and (x, g, y) ∈ G.
We now briefly recap the description of the α-KMS states of C∗(Λ) from [13]. By [13, Proposi-

tion 8.1], there is a unique Borel probability measure µeq on Λ∞ with Radon–Nikodym cocycle e−c.
Let

Per Λ := {m− n | m,n ∈ Nk, σm(x) = σn(x) for all x ∈ Λ∞}.
Then Per Λ is a subgroup of Zk, and [13, Theorem 7.1] describes a one-to-one correspondence between
the extremal α-KMS1-states on C∗(G) and the characters of Per Λ: the state ϕχ corresponding to a
character χ ∈ (Per Λ)̂ is given by

ϕχ(f) =

∫
Λ∞

∑
g∈Per Λ

χ(g)f(x, g, x) dµeq(x) for f ∈ Cc(G). (5.1)

Let πϕχ denote the GNS representation associated to ϕχ. Our goal is to understand the corresponding
von Neumann algebra πϕχ(C∗(G))′′. The following technical result from [13] will play a key role.
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Proposition 5.1. [13, Lemma 12.1] Let Λ be a strongly connected finite k-graph, and G be the
associated groupoid. For µeq-a.e. x ∈ Λ∞, we have Gxx = {x} × Per Λ× {x}.

Note that by Remark 4.5, quasi-invariance of µeq immediately gives Gxx ⊆ {(x, g, x) | ρ(Λ)g = 1}
for µeq-a.e. x. But Proposition 5.1 says much more for k ≥ 2, since the inclusion

Per Λ ⊆ {m− n | m,n ∈ Nk, Am = An}, (5.2)

proved in [13, Remark 7.2], shows that Per Λ is generally an infinite index subgroup of {g | ρ(Λ)g =
1}.

Consider the orbit equivalence relation R on Λ∞ defined by G, so

x ∼R y if and only if σm(x) = σn(y) for some m,n ∈ Nk.
By Lemma 4.4, the measure µeq is quasi-invariant with respect to R, and the corresponding Radon–
Nikodym cocycle D can be described as follows. There is an R-invariant µeq-conull set X ⊆ Λ∞

such that for all x, y ∈ X and m,n ∈ Nk satisfying σm(x) = σn(y), we have

D(x, y) = e−c(x,m−n,y) = ρ(Λ)n−m. (5.3)

From now on we view R as a measurable equivalence relation on (Λ∞, µeq). We write νeq for the
left counting measure on R obtained from µeq as in Section 4, and write π : C[R]→ B(L2(R, dνeq))
for the representation (4.1), so that W ∗(R) = π(C[R])′′.

The following result underpins our computation of the factor type of the extremal α-KMS1 states
described in (5.1). The idea for the isomorphism in part (2) comes from [18, Remark 2.5].

Proposition 5.2. Let Λ be a strongly connected finite k-graph and G be the associated groupoid.
Let χ be a character of Per Λ, let ϕχ be the extremal KMS state of C∗(Λ) defined in (5.1), and let χ̃

be a character of Zk extending χ. Then

(1) there is a ∗-homomorphism Φχ̃ : Cc(G)→ C[R] such that

Φχ̃(f)(x, y) =
∑

(x,g,y)∈G

χ̃(g)f(x, g, y) for f ∈ Cc(G);

(2) the map πϕχ(f) 7→ π(Φχ̃(f)) for f ∈ Cc(G) extends uniquely to a von Neumann algebra
isomorphism of πϕχ(C∗(G))′′ onto W ∗(R);

(3) W ∗(R) is a factor and the equivalence relation R on (Λ∞, µeq) is ergodic.

Proof. Part (1): Since f ∈ Cc(G), the formula for Φχ̃(f) has only finitely many nonzero terms, so
the series converges, and the function Φχ̃(f) is supported on finitely many Borel bisections of R.
It is clear that Φχ̃(f) is Borel. Thus Φχ̃(f) belongs to C[R]. Direct calculation shows that Φχ̃ is a
∗-homomorphism.

Part (2): Proposition 5.1 implies that for f ∈ Cc(G), we have

Φχ̃(f)(x, x) =
∑

g∈Per Λ

χ(g)f(x, g, x) for µeq-a.e. x ∈ Λ∞.

Hence the state ϕ onW ∗(R) defined by (4.2) satisfies ϕ◦Φχ̃ = ϕχ. Since Φχ̃(Cc(G)) is strong-operator
dense in W ∗(R), we can identify π ◦ Φχ̃ with the GNS-representation of ϕχ. Hence πϕχ(C∗(G))′′ ∼=
W ∗(R).

Part (3): Since ϕχ is an extremal KMS state, [2, Theorem 5.3.30(3)] implies that W ∗(R) ∼=
πϕχ(C∗(Λ))′′ is a factor. Proposition 2.9(2) of [8] implies that R is ergodic. �

Equation (5.3) shows that the finer equivalence relation RD of Proposition 4.1 for Q = R and
µ = µeq is given, up to a set of measure 0, by

x ∼RD y if and only if σm(x) = σn(y) for some m,n ∈ Nk with ρ(Λ)m−n = 1. (5.4)

Corollary 4.2 leads us to analyse this equivalence relation RD. To do this, it will help to consider
an even finer equivalence relation.
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Recall that C∗(Λ) carries a canonical action γ of Tk, and that C∗(Λ)γ denotes the fixed-point
algebra for γ (see [15]).

Lemma 5.3. Let Λ be a strongly-connected finite k-graph and G be the associated groupoid. Let Rγ
denote the relation

x ∼Rγ y if and only if σn(x) = σn(y) for some n ∈ Nk,
regarded as a subgroupoid of the measurable equivalence relation RD. Then, using the isomorphism
(x, y) 7→ (x, 0, y) of Rγ onto the kernel G0 of the canonical Zk-valued cocycle (x,m, y) 7→ m on G,
we can consider Rγ as an étale topological equivalence relation, and C∗(Rγ) ∼= C∗(Λ)γ.

Proof. The isomorphism (x, y) 7→ (x, 0, y) of Rγ onto G0 is Borel, so it can be used to define on Rγ
the structure of an étale groupoid. The isomorphism C∗(Λ) ∼= C∗(G) carries the gauge action to the
action given by βz(f)(x, g, y) = zgf(x, g, y) for f ∈ Cc(G) (see the proof of [15, Corollary 3.5(i)]). So
it carries the fixed-point algebra C∗(Λ)γ to the completion of the functions on G supported on G0.
Hence C∗(Rγ) ∼= C∗(Λ)γ . �

Let χ be a character of Per Λ, and let Φχ̃ be as in Proposition 5.2(1). Lemma 5.3 implies that
W ∗(Rγ) ⊆ W ∗(R) is the von Neumann algebra generated by the image under (the extension of)
π ◦ Φχ̃ of C∗(Λ)γ . Note in passing that the gauge action need not pass from C∗(Λ) to W ∗(R); it
extends precisely when Per Λ = 0.

6. Frobenius analysis of strongly connected higher-rank graphs

In this section we analyse strongly connected finite k-graphs that are not necessarily primitive to
obtain a further refinement of the Perron–Frobenius theory for them developed in [16, Lemma 4.1]
and [13, Corollary 4.2]. Generalisations of Perron–Frobenius theory have been studied by a number
of authors (see for example [9] and the references therein), so part of the content of this section may
be known to experts. We give a self-contained presentation since we could not find exactly what we
need in the literature.

Lemma 6.1. Let Λ be a strongly connected k-graph. For each vertex v ∈ Λ0 let P+
v := d(vΛv) ⊆ Nk.

Then P+
v is a subsemigroup of Nk and P+

v − P+
v a subgroup of Zk. Let

PΛ := {d(µ)− d(ν) | µ, ν are cycles in Λ}.
Then PΛ = P+

v − P+
v for every v ∈ Λ0. We call PΛ the group of periods of Λ.

Proof. Fix v ∈ Λ0. The set P+
v is a semigroup because d carries composition to addition, and then

P+
v −P+

v is obviously a subgroup of Zk. We clearly have P+
v −P+

v ⊆ PΛ for each v. For the reverse
inclusion, fix cycles µ, ν ∈ Λ and v ∈ Λ0. Since Λ is strongly connected, there exist λ ∈ r(ν)Λr(µ),
λ′ ∈ r(µ)Λr(ν), η ∈ vΛr(ν) and η′ ∈ r(ν)Λv. Hence

d(µ)− d(ν) = d(ηλµλ′η′)− d(ηνλλ′η′) ∈ P+
v − P+

v . �

When k = 1, the group PΛ is the subgroup of Z generated by the classical period of the directed
graph (Λ0,Λ1, r, s) (see, for example, [23, 14]).

Remark 6.2. Since |vΛnw| = An(v, w) =
(∏k

i=1A
ni
i

)
(v, w) for all v, w, n, the group PΛ depends only

on the connectivity matrices of Λ and is independent of the factorisation property. By contrast, for
k ≥ 2 the group Per Λ is not determined by the Ai alone (see [5]).

We now establish a number of properties of PΛ that we will need in order to compute the types
of the KMS states of C∗(Λ).

Lemma 6.3. Let Λ be a strongly connected k-graph. Then d(λ) − d(µ) ∈ PΛ whenever λ, µ ∈ Λ
satisfy r(λ) = r(µ) and s(λ) = s(µ). In particular, there is a function C : Λ0 × Λ0 → Zk/PΛ such
that C(r(λ), s(λ)) = d(λ) + PΛ for all λ ∈ Λ. For u, v, w ∈ Λ0, we have

C(u, v) + C(v, w) = C(u,w), C(u, u) = 0, and C(u, v) = −C(v, u).
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In particular, there is an equivalence relation ∼ on Λ0 such that v ∼ w if and only if C(v, w) = 0.

Proof. Fix λ, µ with r(λ) = r(µ) and s(λ) = s(µ). Choose ν ∈ s(λ)Λr(λ), so µν and λν are cycles.
Then d(λ) − d(µ) = d(λν) − d(µν) ∈ PΛ. Since vΛw is nonempty for all v, w ∈ Λ0, it follows that
there is a well-defined function C : Λ0 × Λ0 → Zk/PΛ satisfying C(r(λ), s(λ)) = d(λ) + PΛ for all
λ ∈ Λ.

Choose µ ∈ uΛv and ν ∈ vΛw, and note that

C(u,w) = d(µν) + PΛ = d(µ) + d(ν) + PΛ = C(u, v) + C(v, w).

Now C(u, u) = C(u, u) +C(u, u) forces C(u, u) = 0, and then 0 = C(u, u) = C(u, v) +C(v, u) forces
C(u, v) = −C(v, u) for all u and v. The last statement follows. �

Corollary 6.4. Let Λ be a strongly connected finite k-graph, and G be the associated groupoid.
For λ ∈ Λ and w ∈ Λ0, we have C(r(λ), w) = d(λ) + C(s(λ), w), and for (x, g, y) ∈ G we have
C(r(x), r(y)) = g + PΛ.

Proof. The first assertion follows from C(r(λ), w) − C(s(λ), w) = C(r(λ), s(λ)) and the definition
of C. For the second, take (x, g, y) ∈ G, and pick m,n ∈ Nk with m − n = g and σm(x) = σn(y).
Put µ = x(0,m) and ν = x(0, n). Then s(µ) = r(σm(x)) = r(σn(x)) = s(ν). Hence C(r(x), r(y)) =
C(r(µ), s(µ))− C(r(ν), s(ν)) = m+ PΛ − n+ PΛ = g + PΛ. �

The following is the main technical result we will need later.

Proposition 6.5. Let Λ be a strongly connected finite k-graph. There exists p ∈ PΛ ∩ (N \ {0})k
such that for all v, w ∈ Λ0, we have v ∼ w if and only if vΛpw 6= ∅.

Proof. Fix a vertex u0 ∈ Λ0. For each v ∈ Λ0 fix paths λv ∈ vΛu0 and µv ∈ u0Λv. For each
v, w ∈ Λ0, define gv,w := d(λvµw) ∈ Nk.

We define p ∈ (N \ {0})k as follows. For each v, w ∈ Λ with v ∼ w, we have d(λvµw) + PΛ =
C(v, w) = 0+PΛ, and so gv,w ∈ PΛ. By Lemma 6.1 there are cycles α, β in u0Λu0 with d(α)−d(β) =

gv,w. Since Λ has no sources, there exists τ ∈ u0Λ(1,...,1) and since Λ is strongly connected, there
exists τ ′ ∈ s(τ)Λu0. Now αττ ′ and βττ ′ are cycles, and mv,w := d(αττ ′) and nv,w := d(βττ ′) belong

to P+
u0

. In particular, mv,w, nv,w ∈ PΛ ∩ (N \ {0})k and gv,w = mv,w − nv,w. Let

p :=
∑
v∼w

mv,w.

Since P+
u0

is a semigroup, we have p ∈ PΛ∩ (N \ {0})k. We show that v ∼ w if and only if vΛpw 6= ∅.
First suppose that v ∼ w. We have

p =
∑
v′∼w′

mv′,w′ = gv,w +
(
nv,w +

∑
v′∼w′,(v′,w′)6=(v,w)

mv′,w′

)
.

Let n :=
(
nv,w +

∑
v′∼w′,(v′,w′)6=(v,w)mv′,w′

)
. Then n ∈ P+

u0
; say ν ∈ u0Λnu0. So d(λvνµw) =

gv,w + n = p, giving λvνµw ∈ vΛpw.
Now suppose that vΛpw 6= ∅, say λ ∈ vΛpw. Then C(v, w) = d(λ) + PΛ = p + PΛ = 0 + PΛ,

giving v ∼ w. �

Proposition 6.6. Let Λ be a strongly connected finite k-graph. For v ∈ Λ0, the map C(·, v) : Λ0 →
Zk/PΛ induces a bijection C̃v : Λ0/∼ → Zk/PΛ. There is a free and transitive action of Zk/PΛ

on Λ0/∼ such that C̃v
(
(g + PΛ) · [w]

)
= g + C̃v([w]) for all g ∈ Zk, v ∈ Λ0 and [w] ∈ Λ0/∼.

Proof. If u ∼ w then C(u,w) = 0, and so Lemma 6.3 gives C(u, v) = C(u,w) + C(w, v) = C(w, v).

So C(·, v) descends to a function C̃v : Λ0/∼ → Zk/PΛ. If C̃v([u]) = C̃v([w]), then Lemma 6.3 gives

C(u,w) = C(u, v) + C(v, w) = C(u, v) − C(w, v) = C̃v([u]) − C̃v([w]) = 0 and so u ∼ w. So C̃v is
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injective. For surjectivity, fix g + PΛ ∈ Zk/PΛ, and express g = m − n with m,n ∈ Nk. By (2.2),
there exist λ ∈ Λmv, and then µ ∈ r(λ)Λn. Another application of Lemma 6.3 gives

C̃v([s(µ)]) = C(s(µ), v) = C(r(λ), v)− C(r(λ), s(µ)) = m− n+ PΛ = g + PΛ,

so C̃v is surjective.

Pulling back the action of Zk/PΛ on itself by translation along the bijection C̃v gives the desired
free and transitive action on Λ0/∼. Choose another v′ ∈ Λ0 and let � denote the action of Zk/PΛ

such that C̃v′
(
(g+PΛ)� [w]

)
= g+ C̃v′([w]). Choose u ∈ (g+PΛ) · [w] and u′ ∈ (g+PΛ)� [w]. Using

Lemma 6.3 repeatedly, we check that

C(u, u′) = C(u, v) + C(v, v′)− C(u′, v′) = C(v, v′) + C̃v
(
(g + PΛ) · [w]

)
− C̃v′

(
(g + PΛ) � [w]

)
= C(v, v′) + (g + C̃v([w]))− (g + C̃v′([w])) = C(v, v′) + C(w, v)− C(w, v′) = 0.

So (g + PΛ) · [w] = (g + PΛ) � [w] for all w. �

Corollary 6.7. Let Λ be a strongly connected finite k-graph. Then PΛ has index at most |Λ0| in Zk,
and Per Λ ⊆ PΛ. We have PΛ = Zk if and only if Λ is primitive.

Proof. The bijection Zk/PΛ → Λ0/∼ of Proposition 6.6 shows that |Zk/PΛ| ≤ |Λ0|. We have Per Λ ⊆
{d(µ)− d(ν) | r(µ) = r(ν) and s(µ) = s(ν)} by (5.2) and so Lemma 6.3 gives Per Λ ⊆ PΛ.

Suppose that Λ is primitive; say vΛpw 6= ∅ for all v, w. Then each vΛpv 6= ∅, so p ∈ PΛ. For
v, w ∈ Λ0 and λ ∈ vΛpw, we have C(v, w) = d(λ) +PΛ = p+PΛ = 0 +PΛ. So Λ0/∼, and hence also
Zk/PΛ, is a singleton, giving PΛ = Zk. Now suppose that PΛ = Zk. Then C(v, w) = 0 for all v, w,
and then Λ is primitive by Proposition 6.5. �

With ∼ as in Lemma 6.3, for an equivalence class ω ∈ Λ0/∼ we identify Rω with span{δv | v ∈
ω} ⊆ RΛ0

. So RΛ0
decomposes as the internal direct sum

RΛ0
=
⊕

ω∈Λ0/∼
Rω. (6.1)

Observe that the action of Proposition 6.6 determines a transitive action of Nk on Λ0/∼.

Proposition 6.8. Let Λ be a strongly connected finite k-graph. The decomposition (6.1) defines a
system of imprimitivity for the semigroup of matrices (An)n∈Nk ; that is, AnRω ⊆ Rn·ω for all n ∈ Nk
and ω ∈ Λ0/∼.

Proof. Take ω ∈ Λ0/∼ and v ∈ ω. If |wΛnv| = An(w, v) > 0, then C(w, v) = n + PΛ and hence the
class of w in Λ0/∼ is n · ω. �

For the next result, let ∆k denote the k-graph with objects Zk, morphisms {(g, h) ∈ Zk×Zk | g ≤
h}, structure maps r(g, h) = g, s(g, h) = h and d(g, h) = h− g, and composition (g, h)(h, l) = (g, l).
There is a free and transitive action of Zk on ∆k by translation, and for any subgroup G ≤ Zk,
the quotient ∆k/G is a k-graph under the inherited operations. If G has finite index, then ∆k/G is
finite and strongly connected and we think of it as a simple k-dimensional cycle. We write [g, h] for
the image of (g, h) ∈ ∆k in ∆k/G, and we identify (∆k/G)0 with Zk/G via [g, g] 7→ [g].

Proposition 6.9. Let Λ be a strongly connected finite k-graph. The following are equivalent.

(1) Λ ∼= ∆k/PΛ;
(2) |vΛei | = 1 for all v ∈ Λ0 and 1 ≤ i ≤ k;
(3) PΛ = Per Λ; and
(4) ρ(Λ) = (1, . . . , 1).

Proof. (1) =⇒ (2). Take an isomorphism φ : Λ → ∆k/PΛ. For v ∈ Λ0, pick g ∈ Zk with φ(v) = [g].
Then |vΛei | = |[g](∆k/PΛ)ei | = |{[g, g + ei]}| = 1.

(2) =⇒ (3). We have Per Λ ⊆ PΛ by Corollary 6.7. Condition (2) implies that each |vΛ∞| = 1.

So if µ is a cycle and x ∈ s(µ)Λ∞, then µx ∈ s(µ)Λ∞ forces µx = x. Hence σd(µ)(x) = x for all
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x ∈ s(µ)Λ∞, and [13, Lemma 5.1] gives σd(µ)(y) = y for all y. Since the degrees of cycles generate PΛ

we obtain PΛ ⊆ Per Λ.
(3) =⇒ (4). We prove the contrapositive. Suppose that ρ(Λ) 6= (1, . . . , 1). By (5.2), Per Λ is

contained in the group of elements g ∈ Zk such that g · log ρ(Λ) = 0. Hence Per Λ has infinite index
in Zk, while PΛ has finite index by Corollary 6.7.

(4) =⇒ (1). Proposition 6.5 gives p ∈ Nk such that v ∼ w if and only if vΛpw 6= ∅. So Ap is
block-diagonal with strictly positive diagonal blocks indexed by ω ∈ Λ0/∼. Since ρ(Ap) = ρ(Λ)p = 1,
each diagonal block of Ap has spectral radius 1. The only strictly positive square integer matrix
with spectral radius 1 is the 1× 1 identity matrix, so Ap is the identity matrix, and ∼ is the trivial
relation. Now Propositions 6.6 and 6.8 give a bijection φ : Λ0 → Zk/PΛ such that uΛnw 6= ∅
implies φ(u) = n + φ(w). This shows that every column and row of the matrix An has at most
one nonzero entry. Since An has no zero columns and rows, and ρ(An) = 1, this implies that An

is a permutation matrix. Specifically, we have |uΛnw| = δn+PΛ,φ(u)−φ(w). So λ 7→ [φ(r(λ)), φ(s(λ))]

is a bijection of Λ onto ∆k/PΛ that preserves range, source and degree. Since each |vΛn| = 1 this
bijection automatically preserves composition, and hence is an isomorphism of k-graphs. �

7. Type classification of the KMS1 states of C∗(Λ)

Let Λ be a strongly connected finite k-graph, and let C∗(Λ)γ be the fixed-point algebra for the
gauge action γ of Tk on C∗(Λ). By Lemma 5.3, we have C∗(Λ)γ ∼= C∗(Rγ), and so C∗(Rγ) is AF
(see [15]). Specifically, for each n ∈ Nk and v ∈ Λ0, put FΛ(n, v) := span{sµs∗ν | µ, ν ∈ Λnv}, and
then put FΛ(n) := span{sµs∗ν | µ, ν ∈ Λn} for each n. The sµs

∗
ν in any given FΛ(n, v) are matrix

units, so FΛ(n, v) ∼= MatΛnv(C), and we have FΛ(n) =
⊕

v FΛ(n, v). Relation (CK) shows that if
µ, ν ∈ Λnv then sµs

∗
ν =

∑
λ∈vΛm sµλs

∗
νλ ∈ FΛ(m + n) for all m. So each Fλ(n) ⊂ FΛ(m + n), with

inclusion matrix Am, and the inductive limit of the algebras FΛ(n) is C∗(Λ)γ .
Given a matrix B ∈ MatN (N), let FB denote the unital AF algebra whose Bratteli diagram is

stationary with N vertices {vn,i | 1 ≤ i ≤ N} at level n, and B(i, j) edges connecting vn,i to vn+1,j

for all i, j. That is, FB = lim−→Cn, where Cn =
⊕N

i=1 Mat∑
k B

n(k,i)(C), and the partial inclusions

Cn,i ↪→ Cn+1,j have multiplicity B(i, j).

Proposition 7.1. Let Λ be a strongly connected finite k-graph, and let ∼ be the equivalence relation
on Λ0 described in Lemma 6.3. Take p ∈ (N \ {0})k as in Proposition 6.5, so v ∼ w if and only
if vΛpw 6= ∅. For ω ∈ Λ0/∼, define Apω ∈ Matω(N) by Apω(v, w) = |vΛpw| for v, w ∈ ω, and define
qω :=

∑
v∈ω sv ∈ C∗(Λ). Then each Apω is primitive, the projections qω are central in C∗(Λ)γ, each

qωC
∗(Λ)γ ∼= FApω , and C∗(Λ)γ =

⊕
ω∈Λ0/∼

qωC
∗(Λ)γ.

Proof. Each Apω is primitive — indeed its entries are all strictly positive — by choice of p. Since pi 6= 0
for all i, the sequence (np)n∈N is cofinal in Nk. Hence C∗(Λ)γ = lim−→n∈Nk FΛ(n) = lim−→n∈NFΛ(np).

As explained above, the inclusion FΛ(np) ↪→ FΛ((n + 1)p) has matrix Ap, which is block-diagonal
with blocks Apω by choice of p. So C∗(Λ)γ ∼=

⊕
ω FApω as claimed. Each qω is the identity projection

in Apω, so is central. �

Since the Apω are primitive, the stationary Bratteli diagrams they determine are cofinal, so each
qωC

∗(Λ)γ ∼= FApω is simple by [1, Corollary 3.5]. It follows also that each qωC
∗(Λ)γ has a unique tra-

cial state, see for example [19, Proposition 10.4.9]. The trace vector of the approximating subalgebra⊕
v∈ω FΛ(np, v) of qωC

∗(Λ)γ is given by ρ(Apω)−nξω, where ξω is the Perron-Frobenius eigenvector
of Apω with unit 1-norm. As a special case, we deduce that the following are equivalent:

(1) Λ is primitive;
(2) C∗(Λ)γ is simple; and
(3) C∗(Λ)γ carries a unique tracial state.

Equivalence of the first two assertions has been already proved in [17, Theorem 7.2].
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Corollary 7.2. Let Λ be a strongly connected finite k-graph, and let ∼ be the equivalence relation
on Λ0 described in Lemma 6.3. Let Rγ be the equivalence relation of Lemma 5.3. Then the ergodic
components of Rγ with respect to µeq are the sets

Xω := {x ∈ Λ∞ | r(x) ∈ ω} for ω ∈ Λ0/∼. (7.1)

Proof. The isomorphism C∗(Λ)γ ∼= C∗(Rγ) carries each projection qω described in Proposition 7.1
to the characteristic function 1Xω of Xω regarded as a subset of the diagonal in Rγ . Hence the
projections 1Xω are central in C∗(Rγ), so the sets Xω are Rγ-invariant and Λ∞ =

⊔
ωXω. For

ω ∈ Λ0/∼, let Rγω := Rγ ∩ (Xω ×Xω), regarded as an equivalence relation on (Xω, µeq|Xω). Then Rγω
is clopen inRγ , and the canonical inclusion Cc(Rγω) ⊆ Cc(Rγ) extends to an isomorphism W ∗(Rγω) ∼=
1XωW

∗(Rγ). The formula ϕ(f) = 1
µeq(Xω)

∫
Λ∞ f(x, x)dµeq(x) for f supported on Rγω gives a normal

tracial state on W ∗(Rγω). Uniqueness of the trace on the dense subalgebra C∗(Rγω) ∼= qωC
∗(Λ)γ

implies that ϕ is a unique normal tracial state. Thus W ∗(Rγω) is a factor, and so Rγω is ergodic by
[8, Proposition 2.9(2)]. �

We can now compute the factor types of the extremal KMS states of C∗(Λ).

Theorem 7.3. Let Λ be a strongly connected finite k-graph, let α denote the preferred dynamics
on C∗(Λ), and let ϕχ be the extremal α-KMS1-state on C∗(Λ) corresponding to a character χ of

Per Λ as in [13, Theorem 7.1]. Let PΛ ⊆ Zk be the group of periods of Λ from Lemma 6.1. Then the
Connes invariant S of πϕχ(C∗(Λ))′′ is

S = {ρ(Λ)g | g ∈ PΛ} ⊆ [0,∞).

Proof. By Proposition 5.2 it suffices to show that S(W ∗(R)) = {ρ(Λ)g | g ∈ PΛ}. Let ∼ be as in
Lemma 6.3, and fix ω ∈ Λ0/∼. Let Xω be as in (7.1). Since W ∗(R) is a factor, S(W ∗(R)) =
S(1XωW

∗(R)1Xω). The corner 1XωW
∗(R)1Xω is also a factor, and is the von Neumann algebra of

the relativised equivalence relation Rω := R∩ (Xω ×Xω) on (Xω, µeq|Xω).
Consider the relation RDω ⊆ Rω as in (5.4), so

x ∼RDω y if and only if x ∼Rω y and D(x, y) = 1.

Corollary 7.2 implies that Rγω = Rγ ∩ (Xω × Xω) ⊆ RDω is ergodic, and so RDω is ergodic too. So
Corollary 4.2 applied to Q = Rω implies that S(W ∗(R)) = S(W ∗(Rω)) is the set of essential values
of D|Rω with respect to the left counting measure νeq induced by µeq. We must show that this set

is precisely {ρ(Λ)g | g ∈ PΛ}.
In order to prove that {ρ(Λ)g | g ∈ PΛ} contains the set of essential values, it suffices to show that

D(x, y) ∈ {ρ(Λ)g | g ∈ PΛ} for νeq-a.e. (x, y) ∈ Rω. Take (x, y) ∈ Rω and choose m,n ∈ Nk with
(x,m−n, y) ∈ G. Since r(x) ∼ r(y), Corollary 6.4 gives m−n ∈ PΛ. Hence, by (5.3), we νeq-almost
surely have

D(x, y) = ρ(Λ)n−m ∈ {ρ(Λ)g | g ∈ PΛ}.
Now fix s ∈ {ρ(Λ)g | g ∈ PΛ}; say m,n ∈ Nk satisfy m − n ∈ PΛ and s = ρ(Λ)n−m. For every

x ∈ Xω we can find y ∈ Λ∞ such that σm(x) = σn(y), so (x,m− n, y) ∈ G. Then by Corollary 6.4
we have r(x) ∼ r(y), hence y ∈ Xω. In particular, the projection of the closed set

Z := {(x, y) ∈ Xω ×Xω | σm(x) = σn(y)}
onto the first coordinate is the entire set Xω. It follows that νeq(Z) > 0, and since D(x, y) =
ρ(Λ)n−m = s for νeq-a.e. (x, y) ∈ Z, we see that s is an essential value of D on Rω. Since the set of
essential values of D is closed, the result follows. �

Remark 7.4. We computed the type of ϕχ without describing the centre of the centraliser of ϕχ
in πϕχ(C∗(Λ))′′. But such a description falls easily out of our arguments: We want to understand

the ergodic components of the equivalence relation RD on (Λ∞, µeq) defined as in (5.4). Since the
ergodic components of Rγ ⊆ RD are the sets Xω, the ergodic components of RD are unions of these
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sets. In other words, the ergodic components are defined by a coarser equivalence relation ≈ than
the relation ∼ on Λ0. A moment’s reflection shows that this equivalence relation must be given by
v ≈ w if and only if there are λ, µ ∈ Λ with

v = r(λ), w = r(µ), s(λ) = s(µ) and ρ(Λ)d(λ)−d(µ) = 1.

So the minimal central projections of the centraliser are the images of the projections
∑

v∈ω sv for

ω ∈ Λ0/≈ (cf. [20]).

Proof of Theorem 3.1. Part (1) follows immediately from Proposition 3.2, so suppose that β = 1.
Then [13, Corollary 4.6] shows that φ factors through a state φ of C∗(Λ), and [13, Theorem 7.1]
implies that φ = ϕχ for some character χ of Per(Λ).

If ρ(Λ) = (1, . . . , 1), then Proposition 6.9 shows that Λ ∼= ∆k/PΛ. So each vΛn and hence each
vΛ∞ is a singleton set. Choose u0 ∈ Λ0 and fix paths λv ∈ vΛu0 indexed by v ∈ Λ0. Let x be the
unique infinite path with range u0. Then (λvx, d(λv) − d(λw), λwx) ∈ G for all v, w, and it follows
that the equivalence relation R is the full equivalence relation Λ0 ×Λ0. Hence W ∗(R) ∼= MatΛ0(C).
This proves statement (2a).

Now suppose that ρ(Λ) 6= (1, . . . , 1). Then Theorem 7.3 shows that the Connes invariant of
πφ(C∗(Λ))′′ is the closure of the set S described in statement (2b). Since PΛ is a finite index

subgroup of Zk, this set has nontrivial intersection with (0, 1), and the result follows. �

Remark 7.5. Theorem 3.1 generalises Yang’s result [25, Theorem 5.3] to finite k-graphs with more
than one vertex, and removes the technical hypothesis that the intrinsic group of the k-graph has
rank at most one. To see this, observe that if Λ has just one vertex, then PΛ = Zk, and ρ(Λ) =
(|Λe1 |, . . . , |Λek |). So Theorem 3.1 shows that the Connes invariant of the associated factor is the
closure of the subgroup of (0,∞)× generated by the numbers |Λe1 |, . . . , |Λek |. Yang considers only
the situation where each |Λei | ≥ 2. In this case, just as Yang says, if some log(|Λei |)/ log(|Λej |) is
irrational, the factor is of type III1. Otherwise we can uniquely write each |Λe1 |ai = |Λei |bi with

gcd(ai, bi) = 1, and then the factor is of type IIIλ, where λ = |Λe1 |−1/ lcm(b2,··· ,bk).

Remark 7.6. As discussed in Remark 6.2, the group PΛ depends only on the skeleton of Λ and is
independent of the factorisation property. The same is true of the spectral-radius vector ρ(Λ). So
Theorem 3.1 shows that the type of the factors obtained from extremal KMS states depends only
on the skeleton of Λ and not on the factorisation property.

We finish with an explicit example of the phenomenon described in the preceding remark: a pair
of 2-graphs Λ1,Λ2 with the same adjacency matrices, and hence determining the same factors, in
which Per Λ1 and Per Λ2 are distinct proper subgroups of the common group of periods, which is
itself a strict subgroup of Z2.

Example 7.7. Consider the 2-coloured graph below.

u v w
a0 a1
c0 c1

d0 d1

b0 b1

Any 2-graph with this skeleton must satisfy aibi = dici for i = 0, 1 and aib1−i = dic1−i, and so there
are two possible 2-graphs with this skeleton: the 2-graph Λ1 in which cidi = biai for i = 0, 1; and the
2-graph Λ2 in which cidi = b1−ia1−i for i = 0, 1 (see [10]). Every cycle µ in either Λ1 or Λ2 satisfies
d(µ)1 + d(µ)2 ∈ 2Z. Since d(a1c1) = (2, 0) and d(a1b1) = (1, 1) generate {m | m1 + m2 ∈ 2Z}, we
see that PΛi = {m | m1 +m2 ∈ 2Z} for i = 1, 2.

It is easy to see that Λ1 is the pullback of the 1-graph E consisting of blue (solid) paths in Λ over
f : N2 → N, (m,n) 7→ m+ n, as in [15, Definition 1.9]. Since every cycle in E has an entrance, the
periodicity group of E is trivial, and one can use this to check that Per Λ1 = Z(−1, 1) ( PΛ1 ( Z2.
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We claim that Per Λ2 = 2Z(−1, 1). To see this, first note that every infinite path x ∈ uΛ∞2 satisfies

σ(1,0)(c1d1c1x) = d1c1x = a1b1x ∈ Z(a1) whereas σ(0,1)(c1d1c1x) = σ(0,1)(b2a2c1x) = a2c1x ∈ Z(a2).
Since Z(a1) and Z(a2) are disjoint, we deduce that (1, 0)− (0, 1) 6∈ Per Λ2. Since Per Λ2 ⊆ PΛ2 , we

have (m, 0) 6∈ Per Λ2 for m odd, and if m is even and nonzero then any path of the form (c0a0)m/2c1x

satisfies (c0a0)m/2c1x ∈ Z(c0) and σ(m,0)((c0a0)m/2c1x) ∈ Z(c1) giving (m, 0) 6∈ Per Λ2. The same
argument gives (0,m) 6∈ Per Λ2. So Per Λ2 = Zn for some n ∈ (Z \ {0})2. We have vΛ∞2 =
{bi0ai0bi1ai1 · · · | (in)∞n=1 ∈ {0, 1}N}, and repeated application of the factorisation rules using this
description shows that ciaix = b1−id1−ix for i = 1, 2 and x ∈ vΛ∞2 . Since Z(v) = Z(c1a1)∪Z(c2a2),

it follows that σ(2,0)(x) = σ(0,2)(x) for all x ∈ vΛ∞2 , and so (2,−2) ∈ Per Λ2 by [13, Lemma 5.1], and
therefore Per Λ2 = 2Z(1,−1) as claimed.

For either of Λ1 or Λ2, we have

A1 = A2 =

0 1 0
1 0 1
0 1 0

 ,

So A1(1,
√

2, 1)t =
√

2(1,
√

2, 1)t, and since A1 is irreducible, the Perron-Frobenius theorem gives
ρ(Λi) = (

√
2,
√

2) for i = 1, 2. By inspection, for n ∈ N2, there is a cycle in Λi of degree n if and

only if n1 + n2 ∈ 2Z, so that ρ(Λi)
n = 2(n1+n2)/2 is a power of 2. So Theorem 3.1(2b) says that for

i = 1, 2 and any extremal α-KMS1 state φ of C∗(Λi), the factor πφ(C∗(Λi))
′′ is of type III1/2.

Remark 7.8. We could modify the 2-coloured graph of the preceding example by replacing every
red (dashed) edge f with a pair of parallel red edges (f, 0), (f, 1). For either of i = 0, 1, we could
then specify factorisation rules on this amplified 2-coloured graph by e(f, j) = (f ′, j)e′ (j = 0, 1)
whenever ef = f ′e′ in Λi above, obtaining a new 2-graph Λi,2. We then have ρ(Λi,2) = (

√
2, 2
√

2).

Again the cycles in Λi,2 all satisfy d(λ)1 + d(λ2) ∈ 2Z, so each ρ(Λi,2)d(λ) = 2(d(λ1)+d(λ2))/2+d(λ)2 is a
power of 2. So we deduce from Theorem 3.1(2b) that each πφ(C∗(Λi,2))′′ is still of type III1/2.

If, instead of replacing each red edge with two edges (f, 0) and (f, 1) we insert three parallel
red edges (f, 0), (f, 1), (f, 2) to obtain 2-graphs Λi,3, we obtain ρ(Λi,3) = (

√
2, 3
√

2). Since log 2

and log 3 are rationally independent, so are log
√

2 = 1
2 log 2 and log(3

√
2) = log 3 + 1

2 log 2. So
Theorem 3.1(2b) says that πφ(C∗(Λi,3))′′ is the injective III1 factor for i = 1, 2.
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