336 research outputs found
Sensitivity of projected long-term CO 2 emissions across the Shared Socioeconomic Pathways
Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning a wide range of plausible futures in terms of challenges to mitigation and adaptation. Thus far the key drivers of the uncertainty in emissions projections have not been robustly disentangled. Here we assess the sensitivities of future CO 2 emissions to key drivers characterizing the SSPs. We use six state-of-the-art integrated assessment models with different structural characteristics, and study the impact of five families of parameters, related to population, income, energy efficiency, fossil fuel availability, and low-carbon energy technology development. A recently developed sensitivity analysis algorithm allows us to parsimoniously compute both the direct and interaction effects of each of these drivers on cumulative emissions. The study reveals that the SSP assumptions about energy intensity and economic growth are the most important determinants of future CO 2 emissions from energy combustion, both with and without a climate policy. Interaction terms between parameters are shown to be important determinants of the total sensitivities
Climate change scenario services: From science to facilitating action
The goal of limiting global warming to well below 2°C as set out in the Paris Agreement calls for a strategic assessment of societal pathways and policy strategies. Besides policy makers, new powerful actors from private sector, including finance, have stepped up to engage in forward-looking assessments of a Paris-compliant and climate-resilient future. Climate change scenarios have addressed this demand by providing scientific insights on the possible pathways ahead to limit warming in line with the Paris climate goal. Despite the increased interest, the potential of climate change scenarios has not been fully unleashed, mostly due to a lack of an intermediary service that provides guidance and access to climate change scenarios. This perspective presents the concept of a climate change scenario service, its components, and a prototypical implementation to overcome this shortcoming aiming to make scenarios accessible to a broader audience of societal actors and decision makers
Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c
The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton +
\pi^+ + proton + \pi^- has been measured with high statistics at anti-proton
beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin
target combined with the self-analyzing property of \Lambda/anti-\Lambda decay
allows access to unprecedented information on the spin structure of the
interaction. The most general spin-scattering matrix can be written in terms of
eleven real parameters for each bin of scattering angle, each of these
parameters is determined with reasonable precision. From these results all
conceivable spin-correlations are determined with inherent self-consistency.
Good agreement is found with the few previously existing measurements of spin
observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy.
Existing theoretical models do not give good predictions for those
spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are
available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24
pages, 16 figure
Economic damages from on-going climate change imply deeper near-term emission cuts
Pathways toward limiting global warming to well below 2 ∘C, as used by the IPCC in the Fifth Assessment Report, do not consider the climate impacts already occurring below 2 ∘C. Here we show that accounting for such damages significantly increases the near-term ambition of transformation pathways. We use econometric estimates of climate damages on GDP growth and explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment Model we use includes the climate system and mitigation technology detail required to derive near-term policies. We find an optimal carbon price of $115 per tonne of CO2 in 2030. The long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon price. Accounting for damages on economic growth increases the gap between the currently pledged nationally determined contributions and the welfare-optimal 2030 emissions by two thirds, compared to pathways considering the 2 ∘C limit only
Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c
Spin transfer observables for the strangeness-production reaction
Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185
collaboration using a transversely-polarized frozen-spin target with an
antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at
CERN. This measurement investigates observables for which current models of the
reaction near threshold make significantly differing predictions. Those models
are in good agreement with existing measurements performed with unpolarized
particles in the initial state. Theoretical attention has focused on the fact
that these models produce conflicting predictions for the spin-transfer
observables D_{nn} and K_{nn}, which are measurable only with polarized target
or beam. Results presented here for D_{nn} and K_{nn} are found to be in
disagreement with predictions from existing models. These results also
underscore the importance of singlet-state production at backward angles, while
current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure
Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment
The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios
Chapter 6 - Assessing transformation pathways
Stabilizing greenhouse gas (GHG) concentrations at any level will require deep reductions in GHG emissions. Net global CO2 emissions, in particular, must eventually be brought to or below zero. Emissions reductions of this magnitude will require large-scale transformations in human societies, from the way that we produce and consume energy to how we use the land surface. The more ambitious the stabilization goal, the more rapid this transformation must occur. A natural question in this context is what will be the transformation pathway toward stabilization; that is, how do we get from here to there?
The topic of this chapter is transformation pathways. The chapter is motivated primarily by three questions. First, what are the near-term and future choices that define transformation pathways including, for example, the goal itself, the emissions pathway to the goal, the technologies used for and sectors contributing to mitigation, the nature of international coordination, and mitigation policies? Second, what are the key decision making outcomes of different transformation pathways, including the magnitude and international distribution of economic costs and the implications for other policy objectives such as those associated with sustainable development? Third, how will actions taken today influence the options that might be available in the future?
Two concepts are particularly important for framing any answers to these questions. The first is that there is no single pathway to stabilization of GHG concentrations at any level. Instead, the literature elucidates a wide range of transformation pathways. Choices will govern which pathway is followed. These choices include, among other things, the long-term stabilization goal, the emissions pathway to meet that goal, the degree to which concentrations might temporarily overshoot the goal, the technologies that will be deployed to reduce emissions, the degree to which mitigation is coordinated across countries, the policy approaches used to achieve these goals within and across countries, the treatment of land use, and the manner in which mitigation is meshed with other policy objectives such as sustainable development.
The second concept is that transformation pathways can be distinguished from one another in important ways. Weighing the characteristics of different pathways is the way in which deliberative decisions about transformation pathways would be made. Although measures of aggregate economic implications have often been put forward as key deliberative decision making factors, these are far from the only characteristics that matter for making good decisions. Transformation pathways inherently involve a range of tradeoffs that link to other national and policy objectives such as energy and food security, the distribution of economic costs, local air pollution, other environmental factors associated with different technology solutions (e.g., nuclear power, coal-fired carbon dioxide capture and storage (CCS)), and economic competitiveness. Many of these fall under the umbrella of sustainable development.
A question that is often raised about particular stabilization goals and transformation pathways to those goals is whether the goals or pathways are "feasible". In many circumstances, there are clear physical constraints that can render particular long-term goals physically impossible. For example, if additinional mitigation beyond that of today is delayed to a large enough degree and carbon dioxide removal (CDR) options are not available (see Section 6.9), a goal of reaching 450 ppm CO2eq by the end of the 21st century can be physically impossible. However, in many cases, statements about feasibility are bound up in subjective assessments of the degree to which other characteristics of particular transformation pathways might influence the ability or desire of human societies to follow them. Important characteristics include economic implications, social acceptance of new technologies that underpin particular transformation pathways, the rapidity at which social and technological systems would need to change to follow particular pathways, political feasibility, and linkages to other national objectives. A primary goal of this chapter is to illuminate these characteristics of transformation pathways
Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles
Burgeoning demands for mobility and private vehicle ownership undermine global efforts to reduce energy-related greenhouse gas emissions. Advanced vehicles powered by low-carbon sources of electricity or hydrogen offer an alternative to conventional fossil-fuelled technologies. Yet, despite ambitious pledges and investments by governments and automakers, it is by no means clear that these vehicles will ultimately reach mass-market consumers. Here, we develop state-of-the-art representations of consumer preferences in multiple, global energy- economy models, specifically focusing on the non-financial preferences of individuals. We employ these enhanced model formulations to analyse the potential for a low-carbon vehicle revolution up to mid-century. Our analysis shows that a diverse set of measures targeting vehicle buyers is necessary for driving widespread adoption of clean technologies. Carbon pricing alone is insufficient for bringing low-carbon vehicles to mass market, though it can certainly play a supporting role in ensuring a decarbonised energy supply
- …