93 research outputs found

    Dynamic Response of Block Copolymer Wormlike Micelles to Shear Flow

    Get PDF
    The linear and non-linear dynamic response to an oscillatory shear flow of giant wormlike micelles consisting of Pb-Peo block copolymers is studied by means of Fourier transform rheology. Experiments are performed in the vicinity of the isotropic-nematic phase transition concentration, where the location of isotropic-nematic phase transition lines is determined independently. Strong shear-thinning behaviour is observed due to critical slowing down of orientational diffusion as a result of the vicinity of the isotropic- nematic spinodal. This severe shear-thinning behaviour is shown to result in gradient shear banding. Time-resolved Small angle neutron scattering experiments are used to obtain insight in the microscopic phenomena that underly the observed rheological response. An equation of motion for the order-parameter tensor and an expression of the stress tensor in terms of the order-parameter tensor are used to interpret the experimental data, both in the linear and non-linear regime. Scaling of the dynamic behaviour of the orientational order parameter and the stress is found when critical slowing down due to the vicinity of the isotropic-nematic spinodal is accounted for.Comment: Accepted by J. Phys.: Condens. Matter, CODEF II Special Issue. 20 pages, 9 figure

    Dynamic Response of Block Copolymer Wormlike Micelles to Shear Flow

    Get PDF
    The linear and non-linear dynamic response to an oscillatory shear flow of giant wormlike micelles consisting of Pb-Peo block copolymers is studied by means of Fourier transform rheology. Experiments are performed in the vicinity of the isotropic-nematic phase transition concentration, where the location of isotropic-nematic phase transition lines is determined independently. Strong shear-thinning behaviour is observed due to critical slowing down of orientational diffusion as a result of the vicinity of the isotropic- nematic spinodal. This severe shear-thinning behaviour is shown to result in gradient shear banding. Time-resolved Small angle neutron scattering experiments are used to obtain insight in the microscopic phenomena that underly the observed rheological response. An equation of motion for the order-parameter tensor and an expression of the stress tensor in terms of the order-parameter tensor are used to interpret the experimental data, both in the linear and non-linear regime. Scaling of the dynamic behaviour of the orientational order parameter and the stress is found when critical slowing down due to the vicinity of the isotropic-nematic spinodal is accounted for.Comment: Accepted by J. Phys.: Condens. Matter, CODEF II Special Issue. 20 pages, 9 figure

    Fermi surface and order parameter driven vortex lattice structure transitions in twin-free YBa2Cu3O7

    Get PDF
    We report on small-angle neutron scattering studies of the intrinsic vortex lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8 T. Because of the suppressed pinning to twin-domain boundaries, a new distorted hexagonal VL structure phase is stabilized at intermediate fields. It is separated from a low-field hexagonal phase of different orientation and distortion by a first-order transition at 2.0(2) T that is probably driven by Fermi surface effects. We argue that another first-order transition at 6.7(2) T, into a rhombic structure with a distortion of opposite sign, marks a crossover from a regime where Fermi surface anisotropy is dominant, to one where the VL structure and distortion is controlled by the order-parameter anisotropy.Comment: 4 pages, 3 figures (2 color), minor change

    Structural Properties of Thermoresponsive Poly(N-isopropylacrylamide)-poly(ethyleneglycol) Microgels

    Get PDF
    The application of RNA interference to treat disease is an important yet challenging concept in modern medicine. In particular, small interfering RNA (siRNA) have shown tremendous promise in the treatment of cancer. However, siRNA show poor pharmacological properties, which presents a major hurdle for effective disease treatment especially through intravenous delivery routes. In response to these shortcomings, a variety of nanoparticle carriers have emerged, which are designed to encapsulate, protect, and transport siRNA into diseased cells. To be effective as carrier vehicles, nanoparticles must overcome a series of biological hurdles throughout the course of delivery. As a result, one promising approach to siRNA carriers is dynamic versatile nanoparticles that can perform several in vivo functions. Over the last several years, our research group has investigated hydrogel nanoparticles (nanogels) as candidate delivery vehicles for therapeutics, including siRNA. Throughout the course of our research, we have developed higher order architectures composed entirely of hydrogel components, where several different hydrogel chemistries may be isolated in unique compartments of a single construct. In this Account, we summarize a subset of our experiences in the design and application of nanogels in the context of drug delivery, summarizing the relevant characteristics for these materials as delivery vehicles for siRNA. Through the layering of multiple, orthogonal chemistries in a nanogel structure, we can impart multiple functions to the materials. We consider nanogels as a platform technology, where each functional element of the particle may be independently tuned to optimize the particle for the desired application. For instance, we can modify the shell compartment of a vehicle for cell-specific targeting or evasion of the innate immune system, whereas other compartments may incorporate fluorescent probes or regulate the encapsulation and release of macromolecular therapeutics. Proof-of-principle experiments have demonstrated the utility of multifunctional nanogels. For example, using a simple core/shell nanogel architecture, we have recently reported the delivery of siRNA to chemosensitize drug resistant ovarian cancer cells. Ongoing efforts have resulted in several advanced hydrogel structures, including biodegradable nanogels and multicompartment spheres. In parallel, our research group has studied other properties of the nanogels, including their behavior in confined environments and their ability to translocate through small pores

    The spin-dependent nd scattering length - a proposed high-accuracy measurement

    Full text link
    The understanding of few-nucleon systems at low energies is essential, e.g. for accurate predictions of element abundances in big-bang and stellar fusion. Novel effective field theories, taking only nucleons, or nucleons and pions as explicit degrees of freedom, provide a systematic approach, permitting an estimate of theoretical uncertainties. Basic constants parameterising the short range physics are derived from only a handful of experimental values. The doublet neutron scattering length a_2 of the deuteron is particularly sensitive to a three-nucleon contact interaction, but experimentally known with only 6% accuracy. It can be deduced from the two experimentally accessible parameters of the nd scattering length. We plan to measure the poorly known "incoherent" nd scattering length a_{i,d} with 10^{-3} accuracy, using a Ramsey apparatus for pseudomagnetic precession with a cold polarised neutron beam at PSI. A polarised target containing both deuterons and protons will permit a measurement relative to the incoherent np scattering length, which is know experimentally with an accuracy of 2.4\times 10^{-4}.Comment: 5 pages LaTeX2e, 1 .eps figure. To be published in Nucl. Inst. Methods A as part of the Proceedings of the 9th International Workshop on Polarized Solid Targets and Techniques in Bad Honnef (Germany), 27th - 29th October 200

    Time-resolved nuclear spin-dependent small-angle neutron scattering from polarised proton domains in deuterated solutions

    Get PDF
    Abstract.: We have investigated the process of dynamic proton polarisation by means of time-resolved polarised small-angle neutron scattering (SANS) on frozen solutions of EHBA-CrV molecules in glycerol-water mixtures as a function of the concentration of EHBA-CrV and for different degrees of deuteration of the solvent. In the EHBA-CrV complex, the spins of the 20 protons which surround the paramagnetic CrV can be oriented using the method of dynamic nuclear polarisation (DNP), thereby offering the possibility to create locally a nuclear spin-dependent contrast for SANS. The time constants which describe the build-up of polarisation around the paramagnetic centre and the subsequent diffusion of polarisation in the solvent were determined by analysing the temporal evolution of the nuclear polarisation, which in turn was obtained by fitting a core-shell model to the time-dependent SANS curves. The results on the spin dynamics obtained using the scattering function of a core-shell could be independently confirmed by evaluating the integrated SANS intensity. A thermodynamic one-centre model is presented which is able to reproduce the observed dependence of the proton polarisation times on the proton concentration of the solven

    Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study

    Get PDF
    High-purity niobium exhibits a surprisingly rich assortment of vortex lattice (VL) structures for fields applied parallel to a fourfold symmetry axis, with all observed VL phases made up of degenerate domains that spontaneously break some crystal symmetry. Yet a single regular hexagonal VL domain is observed at all temperatures and fields parallel to a threefold symmetry axis. We report a detailed investigation of the transition between these lush and barren VL landscapes, discovering new VL structures and phase transitions at high fields. We show that the number and relative population of VL domains is intrinsically tied to the underlying crystal symmetry. We discuss how subtle anisotropies of the crystal may generate the remarkable VLs observed. © 2009 The American Physical Society

    An assigned responsibility system for robotic teleoperation control

    Get PDF
    This paper proposes an architecture that explores a gap in the spectrum of existing strategies for robot control mode switching in adjustable autonomy. In situations where the environment is reasonably known and/or predictable, pre-planning these control changes could relieve robot operators of the additional task of deciding when and how to switch. Such a strategy provides a clear division of labour between the automation and the human operator(s) before the job even begins, allowing for individual responsibilities to be known ahead of time, limiting confusion and allowing rest breaks to be planned. Assigned Responsibility is a new form of adjustable autonomy-based teleoperation that allows the selective inclusion of automated control elements at key stages of a robot operation plan’s execution. Progression through these stages is controlled by automatic goal accomplishment tracking. An implementation is evaluated through engineering tests and a usability study, demonstrating the viability of this approach and offering insight into its potential applications

    The Max b-HLH-LZ Can Transduce into Cells and Inhibit c-Myc Transcriptional Activities

    Get PDF
    The inhibition of the functions of c-Myc (endogenous and oncogenic) was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max*) behaves as a bona fide protein transduction domain (PTD) that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs
    • …
    corecore