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Structural properties of thermoresponsive
poly(N-isopropylacrylamide)-poly(ethyleneglycol) microgels

J. Clara-Rahola,1,2,a) A. Fernandez-Nieves,2,b) B. Sierra-Martin,1,c) A. B. South,3,d)

L. A. Lyon,3,e) J. Kohlbrecher,4,f) and A. Fernandez Barbero1,g)

1Group of Complex Fluids, Applied Physics Department, University of Almeria, Almeria ES-04120, Spain
2School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
3School of Chemistry and Biochemistry and Petit Institute for Bioengineering & Bioscience, Georgia Institute
of Technology, Atlanta, Georgia 30332, USA
4Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen, Switzerland

(Received 13 February 2012; accepted 15 May 2012; published online 7 June 2012)

We present investigations of the structural properties of thermoresponsive poly(N-
isopropylacrylamide) (PNiPAM) microgels dispersed in an aqueous solvent. In this particular
work poly(ethyleneglycol) (PEG) units flanked with acrylate groups are employed as cross-linkers,
providing an architecture designed to resist protein fouling. Dynamic light scattering (DLS),
static light scattering (SLS), and small angle neutron scattering (SANS) are employed to study
the microgels as a function of temperature over the range 10 ◦C ≤ T ≤ 40 ◦C. DLS and SLS
measurements are simultaneously performed and, respectively, allow determination of the particle
hydrodynamic radius, Rh, and radius of gyration, Rg, at each temperature. The thermal variation
of these magnitudes reveals the microgel deswelling at the PNiPAM lower critical solution
temperature (LCST). However, the hydrodynamic radius displays a second transition to larger
radii at temperatures T ≤ 20 ◦C. This feature is atypical in standard PNiPAM microgels and
suggests a structural reconfiguration within the polymer network at those temperatures. To better
understand this behavior we perform neutron scattering measurements at different temperatures.
In striking contrast to the scattering profile of soft sphere microgels, the SANS profiles for
T ≤ LCST of our PNiPAM-PEG suspensions indicate that the particles exhibit structural properties
characteristic of star polymer configurations. The star polymer radius of gyration and correlation
length gradually decrease with increasing temperature despite maintenance of the star polymer
configuration. At temperatures above the LCST, the scattered SANS intensity is typical of soft sphere
systems. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723686]

I. INTRODUCTION

Microgel particle suspensions have attracted increasing
interest in the field of soft condensed matter since their ability
to swell or expand after a change in variables such as tem-
perature, pH, or ionic strength allows the study of a broad
range of phase behaviors within a single sample; this in ad-
dition allows for a wide variety of industrial applications.1–4

Furthermore, due to their intra-particle structure and un-
even or discontinuous mass distribution, microgel particles
can deform and interpenetrate resulting in many cases in
a strikingly different behavior compared to hard sphere
suspensions.5–7 In this work we aim to study the structure of
thermally responsive poly(N-isopropylacrylamide) microgels
cross-linked with poly(ethylene glycol diacrylate) (PNiPAM-
PEG) at different temperatures by employing a variety of
scattering techniques. This particular system is a relatively

a)Author to whom correspondence should be addressed. Electronic ad-
dresses: joaquim.clara-rahola@physics.gatech.edu and quimtxo@ual.es.

b)Electronic mail: alberto.fernandez@physics.gatech.edu.
c)Electronic mail: bsierra@ual.es.
d)Electronic mail: bonhivac@gmail.com.
e)Electronic mail: lyon@gatech.edu.
f)Electronic mail: joachim.kohlbrecher@psi.ch.
g)Electronic mail: afernand@ual.es.

new class of microgel particle wherein PEG is employed as
cross-linker of the linear PNiPAM.8 PEG is a hydrophilic
non-degradable polymer extensively used in biotechnology,
as it is biocompatible, non-toxic, non-immunogenic, and sol-
uble in water. Moreover, studies of these PEG cross-linked
microgels have illustrated their utility in biotechnological
applications9–12 as PEG facilitates control of protein adsorp-
tion and minimizes non-specific cell adhesion.13, 14 Thus,
PNiPAM-PEG microgels represent a promising system that
can be employed not only in fundamental research but also in
bio- and nano-technological applications such as controlled
drug delivery.15

We study the morphology of this class of microgel system
by employing static and dynamic light scattering (SLS and
DLS, respectively) as well as small angle neutron scattering
(SANS). A double volume transition induced by temperature
is observed, the first one at 17 ◦C and the second one at 32 ◦C,
which corresponds to the lower critical solution temperature
(LCST) of PNiPAM. These transitions determine three tem-
perature ranges where microgels display distinct structural
features which we describe through a combination of soft par-
ticle and star-polymer models. The nature of both transitions
is discussed by proposing as mechanisms, the standard tran-
sition associated to PNiPAM solubility at the LCST, and a
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desolvation transition due to the heterogeneous distribution
of PEG segments into the particles at 17 ◦C.

II. PARTICLE SYNTHESIS

A. Materials

All reagents are purchased from Sigma-Aldrich unless
otherwise specified. The monomer N-isopropylacrylamide
(NiPAM) is recrystallized from hexanes (J.T. Baker) and dried
under vacuum prior to use. The cross-linker poly(ethylene
glycol) diacrylate with average Mw = 700 (PEG-diacrylate),
surfactant sodium dodecyl sulfate (SDS), and initiator am-
monium persulfate (APS) are used as received. Water used
throughout the synthesis is house distilled and deionized to a
resistance of at least 18 M� (Barnstead Thermolyne E-Pure
system).

B. Microgel synthesis

Microgels are synthesized by aqueous free radical pre-
cipitation polymerization using a total monomer concentra-
tion of 70 mM and total volume of 1 L. The molar composi-
tion consists of 98% NiPAM (7.76 g) and 2% PEG-diacrylate
(1.03 mL). Surfactant SDS is used at a concentration
of 1 mM (0.2884 g). The aqueous monomer and surfactant
solution is stirred in a 2 L three-neck round bottom flask and
purged with N2 for approximately 1 h while the solution is
heated to 70 ◦C. The initiator ammonium persulfate (0.2282
g) is dissolved in 1 mL of deionized water and added to ini-
tiate the polymerization (1 mM final concentration). The re-
action is allowed to proceed for 4 h at 70 ◦C under a blan-
ket of N2. Microgels of this composition have been shown
previously to resist aggregation and non-specific protein ad-
sorption at temperatures above the PNiPAM LCST.8–12 The
inferred hydrophilicity of the particles at elevated tempera-
tures has been ascribed to surface-segregation of PEG seg-
ments; this has been confirmed by variable temperature 1H
NMR measurements.8 Once the microgels are obtained, the
system is lyophilized and further redispersed in D2O at a con-
centration c = 1 mg/mL.

III. RESULTS AND DISCUSSION

A. SLS and DLS on PNiPAM-PEG microgels

DLS and SLS are performed on dilute D2O suspensions
of PNiPAM-PEG particles in order to monitor microgel size
variation with temperature. We employ a Malvern 4700 multi-
angle scattering instrument that allows measuring the already
volume corrected static scattering properties of our micro-
gels. The accessible q-range of this instrument allows resolv-
ing the Guinier regime of our PNiPAM-PEG microgels as il-
lustrated in Figure 1(a). In this regime, the SLS intensity is
hallmarked by decaying exponentially, I(q) ∼ exp[−q2R

2/3
g ],

with Rg the radius of gyration at each temperature.16 The
exponential decay of the SLS form factors gradually rises
with increasing temperature and the scattered intensity at low
q rises as well. This suggests microgel deswelling with in-

FIG. 1. SLS intensity profiles (a) and normalized DLS intensity correlation
functions (b) of diluted PNiPAM-PEG microgel systems at different temper-
atures. The temperature evolution (c) of Rh (filled symbols) and Rg (open
symbols) reveals an initial transition for Rh at low temperatures besides the
one at the PNiPAM LCST. The solid lines are fits according to the functional
form R = R0(Tt − T)α . The ratio Rg/Rh denotes the particle softness and
hardness at different temperature ranges (d).

creasing temperature: smaller particles displace their form
factor minima to larger q, while concomitantly the microgel-
solvent optical contrast increases as solvent is expelled with
particle shrinking. The Malvern 4700 multiangle scattering
unit allows performance of DLS experiments simultaneously
with SLS measurements where the intensity correlation func-
tion, gI(τ ), is recorded. As our samples are ergodic, we re-
late the intensity correlation function to the field correla-
tion function, gE(τ ), through the Siegert relation: gI(τ ) − 1
= β[gE(τ )]2, where τ is the correlation lag-time and β is the
coherent factor.17 Consistent with SLS results, the decay time
of gE(τ ) decreases with increasing temperature, as illustrated
in Figure 1(b) where the temperature evolution of the exper-
imental (gI(τ ) − 1)/β is shown. This also indicates microgel
deswelling, as smaller particles diffuse faster than larger par-
ticles causing light de-correlation at shorter times. The corre-
lation function is well described by (gI(τ ) − 1)/β = [gE(τ )]2

∼ exp[−2q2Dτ ], with D the diffusion coefficient and q the
scattering vector.17 The hydrodynamic radius, Rh, is inversely
proportional to D through the Stokes-Einstein relation, D
= kBT/6πηRh, with η the solvent viscosity, T the system tem-
perature, and kB the Boltzmann constant; it is thus straight-
forward to quantify how the hydrodynamic radius depends on
temperature from our DLS measurements.

An unusual behavior is found when the SLS radii of
gyration and the DLS hydrodynamic radii are correlated
with temperature. The static radius of gyration, Rg, gradually
decreases with increasing temperature and exhibits a swift
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TABLE I. Fitting parameters for Rh (DLS) and Rg (SLS) to the functional
form R(T) = R0 (Tt − T)α (right panel). Fitting parameters for the excluded
volume screening-length ξ (SANS) to ξ (T) = ξ0 (Tc − T)ε (left panel).

Light scattering Neutron scattering

R0 (nm) Tt (◦C) α ξ0 (nm) Tc (◦C) ε

Low-temperature transition

DLS 248 17.30 0.0413 34 19.10 0.0742

High-temperature transition

DLS 160 32.25 0.1125 21 32.35 0.1272
SLS 108 32.20 0.1105

reduction to a minimum size at the PNiPAM LCST, as shown
in Figure 1(c). Here it is verified that at the q-window where
the SLS form factors decay exponentially, qRg ∼ 1, which
further emphasizes that the Guinier region is resolved. How-
ever and in striking contrast to the temperature evolution of
Rg, the magnitude of Rh decays to an intermediate plateau
and gradually decreases until the LCST is attained. At the
LCST and at higher temperatures the hydrodynamic radius
collapses down to a minimum length due to poor PNiPAM
hydration, as shown in Figure 1(c). The two temperature tran-
sitions of Rh and the single temperature transition of Rg are
well described by a critical-like functional form, R ∼ R0

[Tt − T]α , where α is a critical exponent and R0 is the particle
radius at a temperature much lower than the transition tem-
perature, Tt. The magnitude of these fitting parameters is pre-
sented in Table I. Note that the Tt corresponding to the LCST
for both Rg and Rh agree with each other and that the criti-
cal exponent α is also remarkably close in both cases. Note
as well that the hydrodynamic radii are significantly larger
than the radii of gyration. This can be attributed to an uneven
mass distribution inside the particle: the mass density is larger
in the central part of the microgel compared to its periphery,
suggesting a core-shell-like structure of the particle. Within
this scope the asymmetrical mass distribution in the particle
becomes more balanced at higher temperatures and in partic-
ular above the LCST.

We also explore the temperature variation of the Rg/Rh

ratio which is typically found to be Rg/Rh = 0.775 for hard
sphere systems and Rg/Rh = 0.61 for soft sphere systems16, 18

and plot the results in Figure 1(d). Above the PNiPAM LCST
we obtain Rg/Rh ∼ 0.71, which indicates that even at these
high temperatures the particles are less dense at their periph-
ery, a result that can be explained considering PEG segre-
gation towards the surface at these temperatures.8 Below the
LCST, Rg/Rh ∼ 0.67 further emphasizing that in our microgel
system the polymer density decreases from the center towards
the periphery of the particle. For even lower temperatures,
T ≤ 17.3 ◦C, below the initial temperature-transition of Rh,
Rg/Rh = 0.57. These results further suggest a core-shell struc-
ture for these microgels, with a varying contribution of each
part depending on the temperature. Below 17 ◦C, PEG and
PNiPAM chains are fully swollen, while above this tem-
perature and below the LCST, PNiPAM-PNiPAM interac-
tions start to appear, as indicated by previous spectroscopy

studies of PNiPAM-PEG block-copolymers, which suggest
that the contraction of the PNiPAM block starts to occur
at 17–18 ◦C.19 However, these interactions are not dominant
over solvent-PNiPAM interactions in this temperature range.
A massive predominant core is still present and it is re-
sponsible for the static properties described by Rg. There-
fore, in the low temperature range, there is a particle shell
that is fully swollen and that we deem responsible for the
low temperature increase of Rh. At intermediate tempera-
tures and due to a more favorable hydration, PEG is pre-
dominant at the outer regions of our particles while PNi-
PAM located in the shell starts to collapse. Here the outer
PEG density is rather low and provides poor contrast when
compared with the static scattering of the overall particle
and is thus not seen in SLS. Above the LCST, PNiPAM
chains collapse resulting in the particle shrinkage to a min-
imal size, while PEG remains predominantly at the microgel
surface.

B. Small angle neutron scattering
on PNIPAM-PEG microgels

SANS experiments are performed in the SANS-1 line
of the Paul Scherrer Institut20 (PSI), Switzerland, with the
aim to better understand the behavior of our PNiPAM-PEG
microgels. Using an incident mean neutron wavelength of
λ = 0.6 nm with a wavelength broadening of �λ/λ = 10%
(FWHM) and 3 detector position we could cover a q-range be-
tween 2.5 μm−1 < q < 350 μm−1. The data were corrected in
the usual way for background scattering, detector efficiency,
and solid-angle distortion and normalized to absolute units
by means of a solvent sample using the BerSANS software
package.21

As in DLS and SLS experiments we span a tem-
perature range 10 ◦C ≤ T ≤ 45 ◦C. At temperatures,
T ≤ 17 ◦C, the neutron scattered intensity drops sharply at low
q and progressively decreases for q > 60 μm−1, as shown in
Figure 2(a) for T = 10 ◦C. At higher T, the neutron intensity
profile is displaced to higher q. However, when the tempera-
ture is close, yet still below the LCST, a feature reminiscent
of an inflection point appears, as shown also in Figure 2(a)
for T = 32 ◦C. Once the LCST is crossed, the SANS inten-
sity exhibits two distinct inflection points, followed by a q−4

intensity decay, as shown in Figure 2(b) for T = 40 ◦C.

1. Star polymer approach

The SANS profiles at low temperatures are highly remi-
niscent of core-shell form factors,22–24 which is indeed the na-
ture of our microgels. However, classic core-shell soft sphere
models do not satisfactorily describe the rich behavior ob-
served in our data. For low T, Rg/Rh ∼ 0.57, which indicates
the extremely open core-shell structure of the particles in this
temperature range. Indeed, a Rg/Rh ratio below 0.61 indicates
an open structure down to a length scale set by the radius of
a small massive core, which we identify with Rg. As a result,
we use a star polymer form factor to describe the SANS data
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FIG. 2. SANS intensity profiles of PNIPAM-PEG suspensions at (a) T
= 10 ◦C (blue squares), T = 32 ◦C (yellow diamonds), and (b) T = 40 ◦C
(red circles). The black lines are the fits according to (a) the star polymer
described by Eq. (1) and (b) the soft sphere models described by Eq. (2).

at low temperatures:25, 26

Pstarpolym (q) = A1

∫
ρ
(
RN

g , δ
)

exp
(−q2RN2

g /3
)
dRN

g

+ A2

qξ

sin(μtan−1(qξ ))

(1 + q2ξ 2)μ/2
+ I0 (1)

where μ = 1/ν − 1, with ν the Flory solvency parameter,
and ξ the polymer excluded volume correlation length in-
side the star.27 The first term in Eq. (1) describes the first
decay of the SANS profiles; it corresponds to a Guinier ap-
proximation and provides the microgel SANS radius of gy-
ration, RN

g . We further consider that RN
g is polydisperse ac-

cording to a Gaussian distribution, ρ(RN
g , δ), of width δ. Due

to the internal structure of our particles, the second term de-
scribes the inner part of the microgel through a blob struc-
ture of size ξ . It is quantitatively described by the Fourier
transform of the mass density correlation function inside the
star and accounts for the polymer structure within the shell
of the microgel particle. The weight of each contribution is
provided by the corresponding amplitudes, A1 and A2.28 We
fit the experimental data using Eq. (1) and minimizing χ2

= [P(q) − Pstarpolym(q)]2, leaving A1, A2, RN
g , δ, ξ , and μ

as free parameters; P(q) is our experimental form factor. The
magnitude I0 in Eq. (1) simply accounts for the incoher-
ent scattering of the sample. Figure 2(a) shows the excellent
agreement between the star-polymer prediction and the exper-
imental form factor at T = 10 ◦C. The agreement is also found

at T = 13.5 ◦C and T = 15 ◦C, at higher temperatures and even
at T = 32 ◦C, as shown in Figure 2(a).28

2. Soft sphere approach

The star polymer form factor no longer describes our
SANS data for temperatures above the PNiPAM LCST. In-
stead, we use a model originally proposed for micelles which
effectively describes the structural features of other micro-
gel systems. In this model the spherical particle is depicted
with a fuzzy surface and characterized by an inhomogeneous
mass distribution through the microgel.29, 30 Microgels whose
structure is well described by this model typically exhibit 0.61
< Rg/Rh < 0.775, emphasizing their soft character. The form
factor is described by the following functional form:

Psof t sphere(q) = A3

∫
ρ(R, γ )

[
3

(qR)3
[sin(qR)

− qR cos(qR)] exp

[
− (σq)2

2

] ]2

dR

+ A4

1 + (qζ )2
+ I0 (2)

Here σ represents the extent of the fuzzy surface around the
micogel and R is the core radius. We consider polydispersity
in R according to a Gaussian distribution, ρ(R, γ ), with γ

the width of the distribution. The first term dominates at low
q-values and describes the overall microgel particle as a
sphere with a fuzzy surface. The second term dominates at
larger q and describes the microgel structure at length scales
below the size of the overall particle. This contribution is thus
related to the characteristic mesh size of the network, ζ . We
fit our data by minimizing χ2 = [P(q) − Psoft sphere(q)]2 with
R, γ , σ , and ζ as fitting parameters. Also, seemingly to the
model at temperatures below the LCST, A3 and A4 are fitting
amplitudes.28 Note that as in Eq. (1), I0 is again a constant to
be added in order to describe the incoherent scattering from
the sample. This model correctly describes the experimental
data, as shown in Figure 2(b) for T = 40 ◦C. We correctly cap-
ture the presence of the two inflection points, which are fea-
tures reminiscent of the core contribution to the form factor in
this q-range, and the decay at larger q reflecting the internal
structure of the particle.28

3. Structural information

The double description proposed in this work separates
the PNiPAM-PEG configuration into two distinct regimes.
Below the LCST, particles are characterized by a low density
open structure and hence a structure that strikingly resembles
a star polymer. In this regime, the excluded volume correla-
tion length, ξ , has a temperature response remarkably similar
to the one exhibited by the hydrodynamic radius and can
be described using the same critical-like expressions that
successfully described the two steps in Rh: ξ = ξ 0(Tc − T)ε,
with Tc a critical temperature and ε a critical exponent.
The fits of the data to this functional form are shown in
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FIG. 3. Temperature evolution of the excluded volume screening length ξ

(blue symbols) and network correlation length ζ (red symbols). The green
lines are fits of the ξ temperature transitions to a critical power law ξ

= ξ0 (Tc − T)ε . The vertical dotted line indicates the position of the PNi-
PAM LCST.

Figure 3 and the magnitude of each fitting parameter is
displayed in Table I. Both Tc and ε are in remarkable agree-
ment with the results obtained from the fits of Rh, reflecting
the affine shrinkage of the particles in this temperature
range. In contrast to this behavior, the radius of gyration
determined by SANS, RN

g , only displays a single transition
at the LCST as described in Figure 4, consistent with the
behavior obtained by light scattering and further supporting
our previous interpretation that our PNiPAM-PEG microgels
can be treated as having a dense core surrounded by a
significantly lower density shell for temperatures below the
LCST. Additionally, for T ≤ 17 ◦C the shell behavior seems
decoupled from the behavior of the core: ξ increases with
decreasing temperature, while Rg is essentially temperature
independent.

For temperatures above the LCST, our PNiPAM-PEG mi-
crogels are best described as soft spheres. In this temperature
range, the network mesh size, ζ , exhibits an asymptotic be-
havior when the temperature is close to the LCST; ζ decreases

FIG. 4. Blue symbols are the radii of gyration, RN
g , resolved from SANS

profiles fitted to the star polymer approximation (Eq. (1)). Red open symbols
are the microgel radii and red closed symbols are the fuzzy soft sphere lengths
added to the soft sphere radii, both resolved from SANS profiles fitted to
the soft sphere approximation (Eq. (2)). The dotted vertical line denotes the
PNiPAM LCST.

FIG. 5. Polydispersity indexes of PNiPAM-PEG microgels at temperatures
below and above the LCST.

with increasing temperature, as shown in Figure 3. Such be-
havior is usually found for other soft particles.30 Therefore,
at temperatures above the LCST the core-shell configuration
is most compact, with a dense core and a dense shell. More-
over, note that the soft sphere radius plus the fuzzy surface
width, R + 2σ , obtained from the fits of the data to the mi-
crogel model described by Eq. (2) and shown in Figure 4
is in agreement with the hydrodynamic radius shown in
Figure 1, consistent with what has been found for microgels.29

It is worthwhile mentioning that the polydispersity index δ is
rather high at low temperatures; as observed in Figure 5. In
the 10–17 ◦C range it reaches a magnitude 0.18 and interest-
ingly it slightly decreases to a plateau at around 17 ◦C un-
til the LCST is approached, where δ further decreases. This
feature reminds the temperature behavior of the hydrody-
namic radius Rh and the volume correlation length ξ and sug-
gests that microgel deswelling with increasing temperature
is homogeneous throughout the sample. Observe as well in
Figure 5 that when the LCST is crossed the polydispersity in-
dex γ reaches a minimum magnitude of 0.05 indicating that a
reasonably monodisperse system is achieved. Moreover, the
magnitude and response of the sample polydispersity with
temperature concurs with the proposed scenario as the low
temperature open star polymer structure allows for a higher
extent in polydispersity than the smaller and more compact
high temperature soft sphere configuration.

In the low temperature region, we obtain a constant Flory
exponent of v = 0.95 as shown in Figure 6. This constancy

FIG. 6. Temperature evolution of the Flory parameter ν at temperatures be-
low the PNiPAM LCST.
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remains up to T ∼ 30 ◦C. Beyond this point, v drops to ∼0.6.
In dilute solution, this exponent controls the overall size of a
polymer chain. Magnitudes of v = 1/2 and v = 3/5 are ex-
pected for random walk and self-avoiding polymers, respec-
tively, while v = 1 reflects a fully stretched polymer chain.31

The evolution of v thus reflects the evolution of our chains
from a stretched situation, consistent with a swollen star poly-
mer morphology, to a self-avoiding walk configuration on the
approach to the LCST. The observed decrease in v thus an-
ticipates the observed deviation of the SANS data from a star
polymer model on the approach to the soft sphere model that
correctly describes our data for T > LCST.

We emphasize that while the structure of our PNiPAM-
PEG microgels, which contains segments composed of
PNiPAM cross-linked with short PEG segments, is certainly
different from the widely investigated block-copolymer-
PNiPAM structures,6, 30, 32, 33 the low temperature transition
we observe could result from the phase behavior observed in
this other system.19 In the block-copolymer structure at tem-
peratures above 17 ◦C, PEG-PNiPAM micelles began show-
ing a hydrophilic-to-hydrophobic transition, as evidenced by
pyrene partitioning and spectroscopic signatures. This transi-
tion was also evident in the phase diagram for the polymers.
These results were interpreted as a selective solvation effect
where PNiPAM segments that were in PEG-rich regions were
selectively desolvated by the PEG, leading to local phase sep-
aration of those PNiPAM segments. In our present system, a
similar phenomenon would lead to surface localization of the
PEG-rich segments and hence a very diffuse microgel struc-
ture. The decrease in Rh at 17 ◦C is therefore likely associated
with a small amount of surface (PNiPAM-based) collapse dur-
ing the PEG-PNiPAM phase separation. We note that since
the majority of the particle mass is still core-localized, this
transition is not observed in Rg.

IV. CONCLUSIONS

We study the structure of PNiPAM-PEG microgel parti-
cles in D2O where PEG is employed as cross-linker. This sys-
tem exhibits a striking double size transition, in contrast to the
single transition found in typical PNiPAM-based microgels.
Different scattering techniques evidence an initial transition
at low temperatures, T = 17 ◦C, in addition to the particle col-
lapse at the PNiPAM LCST. Correlation functions from DLS
experiments allow the determination of the hydrodynamic ra-
dius, Rh, for which this double size transition is well observed.
We also measure the structural radius of gyration, Rg, using
SLS and SANS experiments. In contrast to the behavior of
Rh, Rg only exhibits the LCST transition. Moreover, the mag-
nitude of Rg is significantly smaller than Rh suggesting a core-
shell particle structure with a larger mass density in the core
than in the shell. In addition, SANS measurements below the
PNiPAM LCST display microgel form factors that can be de-
scribed by a star polymer model, supporting the scenario of a
core-shell mass density profile within the particle. The struc-
tural polymer excluded volume length exhibits a double tran-
sition as well. Above the LCST the system achieves its min-
imal size and has a dense core and a dense shell. As a result,

in this temperature range, the microgel form factor is well de-
scribed by a soft sphere model.
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