23 research outputs found

    A Lunar Electromagnetic Launch System for In-Situ Resource Utilization

    Get PDF
    Future human exploration of the moon will require the development of capabilities for in-situ resource utilization (ISRU). Transport of lunar-derived commodities such as fuel and oxygen to orbiting resource depots has been proposed to enable refueling landers or other vehicles. A lunar electromagnetic launch (LEML) system could be an effective means of transporting materials, as an alternative to non-renewable chemical-based propulsion systems. An example LEML concept is presented based on previous studies, existing EML technologies, and NASA's human exploration architecture. A preliminary assessment of the cost-versus-benefit of such a system is also offered; the conclusion, however, is not as favorable for LEML as originally suggested

    Aircraft/island/ship/satellite intercomparison: Preliminary results from July 16, 1987

    Get PDF
    The First ISCCP Regional Experiment (FIRE) objective of validating and improving satellite algorithms for inferring cloud properties from satellite radiances was one of the central motivating factors in the design of the specific field experimental strategies used in the July, 1987 marine stratocumulus intensive field observations (IFO). The in situ measuring platforms were deployed to take maximum advantage of redundant measurements (for intercomparison of the in situ sensors) and to provide optimal coverage within satellite images. One of the most ambitious of these strategies was the attempt to coordinate measurements from San Nicolas Island (SNI), the R/V Pt. Sur, the meteorological aircraft, and the satellites. For the most part, this attempt was frustrated by flight restrictions in the vicinity of SNI. The exception was the mission of July 16, 1987, which achieved remarkable success in the coordination of the platforms. This presentation concerns operations conducted by the National Center for Atmospheric Research (NCAR) Electra and how data from the Electra can be integrated with and compared to data from the Pt. Sur, SNI, and the satellites. The focus is on the large-scale, integrated picture of the conditions on July 16 from the perspective of the Electra's flight operations

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Aircraft/island/ship/satellite intercomparison: Preliminary results from July 16, 1987

    Get PDF
    The First ISCCP Regional Experiment (FIRE) objective of validating and improving satellite algorithms for inferring cloud properties from satellite radiances was one of the central motivating factors in the design of the specific field experimental strategies used in the July, 1987 marine stratocumulus intensive field observations (IFO). The in situ measuring platforms were deployed to take maximum advantage of redundant measurements (for intercomparison of the in situ sensors) and to provide optimal coverage within satellite images. One of the most ambitious of these strategies was the attempt to coordinate measurements from San Nicolas Island (SNI), the R/V Pt. Sur, the meteorological aircraft, and the satellites. For the most part, this attempt was frustrated by flight restrictions in the vicinity of SNI. The exception was the mission of July 16, 1987, which achieved remarkable success in the coordination of the platforms. This presentation concerns operations conducted by the National Center for Atmospheric Research (NCAR) Electra and how data from the Electra can be integrated with and compared to data from the Pt. Sur, SNI, and the satellites. The focus is on the large-scale, integrated picture of the conditions on July 16 from the perspective of the Electra's flight operations.Approved for public release; distribution is unlimited
    corecore