107 research outputs found

    Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke

    Get PDF
    © 2015 Nijenhuis et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Assistive and robotic training devices are increasingly used for rehabilitation of the hemiparetic arm after stroke, although applications for the wrist and hand are trailing behind. Furthermore, applying a training device in domestic settings may enable an increased training dose of functional arm and hand training. The objective of this study was to assess the feasibility and potential clinical changes associated with a technology-supported arm and hand training system at home for patients with chronic stroke. METHODS: A dynamic wrist and hand orthosis was combined with a remotely monitored user interface with motivational gaming environment for self-administered training at home. Twenty-four chronic stroke patients with impaired arm/hand function were recruited to use the training system at home for six weeks. Evaluation of feasibility involved training duration, usability and motivation. Clinical outcomes on arm/hand function, activity and participation were assessed before and after six weeks of training and at two-month follow-up. RESULTS: Mean System Usability Scale score was 69 % (SD 17 %), mean Intrinsic Motivation Inventory score was 5.2 (SD 0.9) points, and mean training duration per week was 105 (SD 66) minutes. Median Fugl-Meyer score improved from 37 (IQR 30) pre-training to 41 (IQR 32) post-training and was sustained at two-month follow-up (40 (IQR 32)). The Stroke Impact Scale improved from 56.3 (SD 13.2) pre-training to 60.0 (SD 13.9) post-training, with a trend at follow-up (59.8 (SD 15.2)). No significant improvements were found on the Action Research Arm Test and Motor Activity Log. CONCLUSIONS: Remotely monitored post-stroke training at home applying gaming exercises while physically supporting the wrist and hand showed to be feasible: participants were able and motivated to use the training system independently at home. Usability shows potential, although several usability issues need further attention. Upper extremity function and quality of life improved after training, although dexterity did not. These findings indicate that home-based arm and hand training with physical support from a dynamic orthosis is a feasible tool to enable self-administered practice at home. Such an approach enables practice without dependence on therapist availability, allowing an increase in training dose with respect to treatment in supervised settings. TRIAL REGISTRATION: This study has been registered at the Netherlands Trial Registry (NTR): NTR3669 .Peer reviewe

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke

    European evidence-based recommendations for clinical assessment of upper limb in neurorehabilitation (CAULIN): data synthesis from systematic reviews, clinical practice guidelines and expert consensus

    Get PDF
    Background: Technology-supported rehabilitation can help alleviate the increasing need for cost-effective rehabilitation of neurological conditions, but use in clinical practice remains limited. Agreement on a core set of reliable, valid and accessible outcome measures to assess rehabilitation outcomes is needed to generate strong evidence about effectiveness of rehabilitation approaches, including technologies. This paper collates and synthesizes a core set from multiple sources; combining existing evidence, clinical practice guidelines and expert consensus into European recommendations for Clinical Assessment of Upper Limb In Neurorehabilitation (CAULIN). Methods: Data from systematic reviews, clinical practice guidelines and expert consensus (Delphi methodology) were systematically extracted and synthesized using strength of evidence rating criteria, in addition to recommendations on assessment procedures. Three sets were defined: a core set: strong evidence for validity, reliability, responsiveness and clinical utility AND recommended by at least two sources; an extended set: strong evidence OR recommended by at least two sources and a supplementary set: some evidence OR recommended by at least one of the sources. Results: In total, 12 measures (with primary focus on stroke) were included, encompassing body function and activity level of the International Classification of Functioning and Health. The core set recommended for clinical practice and research: Fugl-Meyer Assessment of Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT); the extended set recommended for clinical practice and/or clinical research: kinematic measures, Box and Block Test (BBT), Chedoke Arm Hand Activity Inventory (CAHAI), Wolf Motor Function Test (WMFT), Nine Hole Peg Test (NHPT) and ABILHAND; the supplementary set recommended for research or specific occasions: Motricity Index (MI); Chedoke-McMaster Stroke Assessment (CMSA), Stroke Rehabilitation Assessment Movement (STREAM), Frenchay Arm Test (FAT), Motor Assessment Scale (MAS) and body-worn movement sensors. Assessments should be conducted at pre-defined regular intervals by trained personnel. Global measures should be applied within 24 h of hospital admission and upper limb specific measures within 1 week. Conclusions: The CAULIN recommendations for outcome measures and assessment procedures provide a clear, simple, evidence-based three-level structure for upper limb assessment in neurological rehabilitation. Widespread adoption and sustained use will improve quality of clinical practice and facilitate meta-analysis, critical for the advancement of technology-supported neurorehabilitation.The European Network on Robotics for NeuroRehabilitation (Working Group 1) developed these recommendations. Their work was funded by the European Co-Operation in Science and Technology (COST Action TD1006) programme. The funding body had no role in or infuence on the selected approach and synthesis, analysis, and interpretation of data and in writing the manuscript

    Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: a randomized first human dose trial

    Full text link
    BACKGROUND: Prophylaxis with either intravenous (i.v.) factor VIII (FVIII) or FIX is the gold standard of care for patients with severe hemophilia. A monoclonal antibody (concizumab) targeting tissue factor pathway inhibitor (TFPI) that can be administered subcutaneously (s.c.) has the potential to alter current concepts of prophylaxis in hemophilia. OBJECTIVES: To evaluate the safety and describe the pharmacokinetics and pharmacodynamics of single-dose concizumab in healthy volunteers and patients with hemophilia A or B. METHODS: In this first human dose, phase 1, multicenter, randomized, double-blind, placebo-controlled trial escalating single i.v. (0.5-9000 μg kg(-1) ) or s.c. (50-3000 μg kg(-1) ) doses of concizumab were administered to healthy volunteers (n = 28) and hemophilia patients (n = 24). RESULTS: Concizumab had a favorable safety profile after single i.v. or s.c. administration. There were no serious adverse events and no anti-concizumab antibodies. No clinically relevant changes in platelets, prothrombin time, activated partial thromboplastin time, fibrinogen, or antithrombin were found. A dose-dependent procoagulant effect of concizumab was seen as increased levels of D-dimers and prothrombin fragment 1 + 2. Nonlinear pharmacokinetics of concizumab was observed due to target-mediated clearance. A maximum mean AUC0-∞ of 33 960 h μg mL(-1) and a maximum mean concentration of 247 μg mL(-1) was measured at the highest dose. CONCLUSIONS: Concizumab showed a favorable safety profile after i.v. or s.c. administration and nonlinear pharmacokinetics was observed due to target-mediated clearance. A concentration-dependent procoagulant effect of concizumab was observed, supporting further study into the potential use of s.c. concizumab for hemophilia treatment

    Pathogen reduction/inactivation of products for the treatment of bleeding disorders:what are the processes and what should we say to patients?

    Get PDF
    Patients with blood disorders (including leukaemia, platelet function disorders and coagulation factor deficiencies) or acute bleeding receive blood-derived products, such as red blood cells, platelet concentrates and plasma-derived products. Although the risk of pathogen contamination of blood products has fallen considerably over the past three decades, contamination is still a topic of concern. In order to counsel patients and obtain informed consent before transfusion, physicians are required to keep up to date with current knowledge on residual risk of pathogen transmission and methods of pathogen removal/inactivation. Here, we describe pathogens relevant to transfusion of blood products and discuss contemporary pathogen removal/inactivation procedures, as well as the potential risks associated with these products: the risk of contamination by infectious agents varies according to blood product/region, and there is a fine line between adequate inactivation and functional impairment of the product. The cost implications of implementing pathogen inactivation technology are also considered

    Norm-based approximation in multicriteria programming

    Get PDF
    AbstractBased on new theoretical results on norms, heuristic algorithms to approximate the nondominated set of multicriteria programs are proposed. By automatically adapting to the problem's structure and scaling, the approximation is constructed objectively without interaction with the decision maker. As the algorithms extend the results obtained for bicriteria programs, difficulties encountered when dealing with more than two criteria are discussed

    Combination of Digital Image Correlation (DIC) and in situ 3D-μ-CT in the analysis of the relationship between strains and porosity under creep loading

    Full text link
    Abstract In situ 3D μ-XCT allows the time and space resolved measurement and analysis of material damage in the component volume, whereas the Digital Image Correlation (DIC) is a 2D method for the analysis of deformation measured on the surfaces of components. In situ 3D μ-XCT measurements were performed on cylindrical specimen made of SiC particle reinforced titanium MMC (MMC: Metal Matrix Composite) (15 % SiC particles) during creep load. The formation and evolution of voids were subsequently analyzed. Due to the rotationally symmetric sample geometry, the analysis of the deformation in the interior of the material by DIC using 2D slices is possible and evident. The dot pattern required to calculate the strain using DIC (speckle pattern) is provided by the intrinsic particle reinforcement of the MMCs. Temporally and locally changing and time-variant strain fields in both the tensile as well as the compressive range could be detected correlating with void formation and development area.</jats:p
    corecore