10,214 research outputs found
The far-ultraviolet main auroral emission at Jupiter - Part 1:dawn-dusk brightness asymmetries
The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range, is related to corotation enforcement currents in the middle magnetosphere. Early models for these currents assumed axisymmetry, but significant local time variability is obvious on any image of the Jovian aurorae. Here we use far-UV images from the Hubble Space Telescope to further characterize these variations on a statistical basis. We show that the dusk side sector is ~ 3 times brighter than the dawn side in the southern hemisphere and ~ 1.1 brighter in the northern hemisphere, where the magnetic anomaly complicates the interpretation of the measurements. We suggest that such an asymmetry between the dawn and the dusk sectors could be the result of a partial ring current in the nightside magnetosphere
Modeling the Enceladus plume--plasma interaction
We investigate the chemical interaction between Saturn's corotating plasma
and Enceladus' volcanic plumes. We evolve plasma as it passes through a
prescribed H2O plume using a physical chemistry model adapted for water-group
reactions. The flow field is assumed to be that of a plasma around an
electrically-conducting obstacle centered on Enceladus and aligned with
Saturn's magnetic field, consistent with Cassini magnetometer data. We explore
the effects on the physical chemistry due to: (1) a small population of hot
electrons; (2) a plasma flow decelerated in response to the pickup of fresh
ions; (3) the source rate of neutral H2O. The model confirms that charge
exchange dominates the local chemistry and that H3O+ dominates the water-group
composition downstream of the Enceladus plumes. We also find that the amount of
fresh pickup ions depends heavily on both the neutral source strength and on
the presence of a persistent population of hot electrons.Comment: 10 pages, 1 table, 2 figure
Non Fermi Liquid Behaviour near a spin-glass transition
In this paper we study the competition between the Kondo effect and RKKY
interactions near the zero-temperature quantum critical point of an Ising-like
metallic spin-glass. We consider the mean-field behaviour of various physical
quantities. In the `quantum- critical regime' non-analytic corrections to the
Fermi liquid behaviour are found for the specific heat and uniform static
susceptibility, while the resistivity and NMR relaxation rate have a non-Fermi
liquid dependence on temperature.Comment: 15 pages, RevTex 3.0, 1 uuencoded ps. figure at the en
Route following without scanning
Desert ants are expert navigators, foraging over large distances using visually guided routes. Recent models of route following can reproduce aspects of route guidance, yet the underlying motor patterns do not reflect those of foraging ants. Specifically, these models select the direction of movement by rotating to find the most familiar view. Yet scanning patterns are only occasionally observed in ants. We propose a novel route following strategy inspired by klinokinesis. By using familiarity of the view to modulate the magnitude of alternating left and right turns, and the size of forward steps, this strategy is able to continually correct the heading of a simulated ant to maintain its course along a route. Route following by klinokinesis and visual compass are evaluated against real ant routes in a simulation study and on a mobile robot in the real ant habitat. We report that in unfamiliar surroundings the proposed method can also generate ant-like scanning behaviours
Dynamical mean field theory for transition temperature and optics of CMR manganites
A tight binding parametrization of local spin density functional band theory
is combined with a dynamical mean field treatment of correlations to obtain a
theory of the magnetic transition temperature, optical conductivity and T=0
spinwave stiffness of a minimal model for the pseudocubic metallic
manganites such a . The results indicate that previous
estimates of obtained by one of us (Phys. Rev. \textbf{B61} 10738-49
(2000)) are in error, that in fact the materials are characterized by Hunds
coupling , and that magnetic-order driven changes in the
kinetic energy may not be the cause of the observed 'colossal' magnetoresistive
and multiphase behavior in the manganites, raising questions about our present
understanding of these materials.Comment: Published version; 10 pages, 9 figure
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
Raman scattering through a metal-insulator transition
The exact solution for nonresonant A1g and B1g Raman scattering is presented
for the simplest model that has a correlated metal-insulator transition--the
Falicov-Kimball model, by employing dynamical mean field theory. In the general
case, the A1g response includes nonresonant, resonant, and mixed contributions,
the B1g response includes nonresonant and resonant contributions (we prove the
Shastry-Shraiman relation for the nonresonant B1g response) while the B2g
response is purely resonant. Three main features are seen in the nonresonant
B1g channel: (i) the rapid appearance of low-energy spectral weight at the
expense of higher-energy weight; (b) the frequency range for this low-energy
spectral weight is much larger than the onset temperature, where the response
first appears; and (iii) the occurrence of an isosbestic point, which is a
characteristic frequency where the Raman response is independent of temperature
for low temperatures. Vertex corrections renormalize away all of these
anomalous features in the nonresonant A1g channel. The calculated results
compare favorably to the Raman response of a number of correlated systems on
the insulating side of the quantum-critical point (ranging from Kondo
insulators, to mixed-valence materials, to underdoped high-temperature
superconductors). We also show why the nonresonant B1g Raman response is
``universal'' on the insulating side of the metal-insulator transition.Comment: 12 pages, 11 figures, ReVTe
The far-ultraviolet main auroral emission at Jupiter – Part 2:vertical emission profile
The aurorae at Jupiter are made up of many different features associated with a variety of generation mechanisms. The main auroral emission, also known as the main oval, is the most prominent of them as it accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range. The energy of the precipitating electrons is a crucial parameter to characterize the processes at play which give rise to these auroral emissions, and the altitude of the emissions directly depends on this energy. Here we make use of far-UV (FUV) images acquired with the Advanced Camera for Surveys on board the Hubble Space Telescope and spectra acquired with the Space Telescope Imaging Spectrograph to measure the vertical profile of the main emissions. The altitude of the brightness peak as seen above the limb is ~ 400 km, which is significantly higher than the 250 km measured in the post-dusk sector by Galileo in the visible domain. However, a detailed analysis of the effect of hydrocarbon absorption, including both simulations and FUV spectral observations, indicates that FUV apparent vertical profiles should be considered with caution, as these observations are not incompatible with an emission peak located at 250 km. The analysis also calls for spectral observations to be carried out with an optimized geometry in order to remove observational ambiguities
Interchangeable punishments during aversive conditioning in Drosophila
Using Drosophila melanogaster larvae we asked whether distinct aversive stimuli have a common neuralrepresentation during associative learning. We tested the interchangeability of heat shock and electroshock punishments when used within a single olfactory associative conditioning experiment. We find that compared to animals trained with the repetitive use of a single punishment, the use of two alternating punishments results in similar associative learning. Additionally, the two punishments are shown to have different sensory origins. Therefore, while punishments are processed differently by the larvae of Drosophila melanogaster, the value of the stimulus is preserved
Heavy Quasi-Particle in the Two-Orbital Hubbard Model
The two-orbital Hubbard model with the Hund coupling is investigated in a
metallic phase close to the Mott insulator. We calculate the one-particle
spectral function and the optical conductivity within dynamical mean field
theory, for which the effective impurity problem is solved by using the
non-crossing approximation. For a metallic system close to quarter filling, a
heavy quasi-particle band is formed by the Hubbard interaction, the effective
mass of which is not so sensitive to the orbital splitting and the Hund
coupling. In contrast, a heavy quasi-particle band near half filling disappears
in the presence of the orbital splitting, but is induced again by the
introduction of the Hund coupling, resulting in a different type of heavy
quasi-particles.Comment: 6page, 7eps figures, to appear in J. Phys. Soc. Jp
- …
