8 research outputs found

    Fit between humanitarian professionals and project requirements: hybrid group decision procedure to reduce uncertainty in decision-making

    Get PDF
    Choosing the right professional that has to meet indeterminate requirements is a critical aspect in humanitarian development and implementation projects. This paper proposes a hybrid evaluation methodology for some non-governmental organizations enabling them to select the most competent expert who can properly and adequately develop and implement humanitarian projects. This methodology accommodates various stakeholders’ perspectives in satisfying the unique requirements of humanitarian projects that are capable of handling a range of uncertain issues from both stakeholders and project requirements. The criteria weights are calculated using a two-step multi-criteria decision-making method: (1) Fuzzy Analytical Hierarchy Process for the evaluation of the decision maker weights coupled with (2) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to rank the alternatives which provide the ability to take into account both quantitative and qualitative evaluations. Sensitivity analysis have been developed and discussed by means of a real case of expert selection problem for a non-profit organisation. The results show that the approach allows a decrease in the uncertainty associated with decision-making, which proves that the approach provides robust solutions in terms of sensitivity analysis

    LDA Study of the Flow Development Through an Orthogonally Rotating U-Bend of Strong Curvature and Rib Roughened Walls

    Full text link
    This paper reports laser Doppler anemometry (LDA) and wall pressure measurements of turbulent flow in a square-sectioned, rotating U-bend typical of coolant passages employed in modern gas turbine blades. In the upstream and downstream tangents, the pressure and suction (inner and outer) surfaces are roughened with discrete square-sectioned ribs in a staggered arrangement for a rib-height to duct-diameter ratio of 0.1. Three cases have been examined at a passage Reynolds number of 105: a stationary case; a case of positive rotation (the pressure side coinciding with the outer side of the U-bend) at a rotation number (Ro=ΩD/Um) of 0.2; and a case of negative rotation at Ro=−0.2. Measurements have been obtained along the symmetry plane of the duct. In the upstream section, the separation bubble behind each rib is about 2.5 rib-heights long. Rotation displaces the high momentum fluid towards the pressure side, enhances turbulence along the pressure side and suppresses turbulence along the suction side. The introduction of ribs in the straight sections reduces the size of the separation bubble along the inner wall of the U-bend, by raising turbulence levels at the bend entry; it also causes the formation of an additional separation bubble over the first rib interval along the outer wall, downstream of the bend exit. Rotation also modifies the mean flow development within the U-bend, with negative rotation speeding up the flow along the inner wall and causing a wider inner-wall separation bubble at exit. Turbulence levels within the bend are generally increased by rotation and, over the first two diameters downstream of the bend, negative rotation increases turbulence while positive rotation on the whole has the opposite effect.</jats:p

    Lupus erythematodes (Cazenave)

    No full text
    corecore