682 research outputs found
The effect of ram pressure on the star formation, mass distribution and morphology of galaxies
We investigate the dependence of star formation and the distribution of the
components of galaxies on the strength of ram pressure. Several mock
observations in X-ray, H and HI wavelength for different ram-pressure
scenarios are presented. By applying a combined N-body/hydrodynamic description
(GADGET-2) with radiative cooling and a recipe for star formation and stellar
feedback 12 different ram-pressure stripping scenarios for disc galaxies were
calculated. Special emphasis was put on the gas within the disc and in the
surroundings. All gas particles within the computational domain having the same
mass resolution. The relative velocity was varied from 100 km/s to 1000 km/s in
different surrounding gas densities in the range from to
g/cm. The temperature of the surrounding gas was
initially K. The star formation of a galaxy is enhanced by more
than a magnitude in the simulation with a high ram-pressure (
dyn/cm) in comparison to the same system evolving in isolation. The
enhancement of the star formation depends more on the surrounding gas density
than on the relative velocity. Up to 95% of all newly formed stars can be found
in the wake of the galaxy out to distances of more than 350 kpc behind the
stellar disc. Continuously stars fall back to the old stellar disc, building up
a bulge-like structure. Young stars can be found throughout the stripped wake
with surface densities locally comparable to values in the inner stellar disc.
Ram-pressure stripping can shift the location of star formation from the disc
into the wake on very short timescales. (Abridged)Comment: 19 pages, 25 figures, A&A accepted, high resolution version can be
found at http://astro.uibk.ac.at/~wolfgang/kapferer_rps_galaxies.pd
Internal kinematics of isolated modelled disk galaxies
We present a systematic investigation of rotation curves (RCs) of fully
hydrodynamically simulated galaxies, including cooling, star formation with
associated feedback and galactic winds. Applying two commonly used fitting
formulae to characterize the RCs, we investigate systematic effects on the
shape of RCs both by observational constraints and internal properties of the
galaxies. We mainly focus on effects that occur in measurements of intermediate
and high redshift galaxies. We find that RC parameters are affected by the
observational setup, like slit misalignment or the spatial resolution and also
depend on the evolution of a galaxy. Therefore, a direct comparison of
quantities derived from measured RCs with predictions of semi-analytic models
is difficult. The virial velocity V_c, which is usually calculated and used by
semi-analytic models can differ significantly from fit parameters like V_max or
V_opt inferred from RCs. We find that V_c is usually lower than typical
characteristic velocities derived from RCs. V_max alone is in general not a
robust estimator for the virial mass.Comment: 9 pages, 15 figures, accepted for publication in A&
Internal kinematics of modelled interacting disc galaxies
We present an investigation of galaxy-galaxy interactions and their effects
on the velocity fields of disc galaxies in combined N-body/hydrodynamic
simulations, which include cooling, star formation with feedback, and galactic
winds. Rotation curves (RCs) of the gas are extracted from these simulations in
a way that follows the procedure applied to observations of distant, small, and
faint galaxies as closely as possible. We show that galaxy-galaxy mergers and
fly-bys disturb the velocity fields significantly and hence the RCs of the
interacting galaxies, leading to asymmetries and distortions in the RCs.
Typical features of disturbed kinematics are significantly rising or falling
profiles in the direction of the companion galaxy and pronounced bumps in the
RCs. In addition, tidal tails can leave strong imprints on the rotation curve.
All these features are observable for intermediate redshift galaxies, on which
we focus our investigations. We use a quantitative measure for the asymmetry of
rotation curves to show that the appearance of these distortions strongly
depends on the viewing angle. We also find in this way that the velocity fields
settle back into relatively undisturbed equilibrium states after unequal mass
mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no
severe distortions anymore. These results are consistent with previous
theoretical and observational studies. As an illustration of our results, we
compare our simulated velocity fields and direct images with rotation curves
from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find
remarkable similarities.Comment: 13 pages, 14 figures, accepted for publication in A&A, some
improvements and changes, main conclusions are unaffecte
2D velocity fields of simulated interacting disc galaxies
We investigate distortions in the velocity fields of disc galaxies and their
use to reveal the dynamical state of interacting galaxies at different
redshift. For that purpose, we model disc galaxies in combined
N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted
from these simulations which we place at different redshifts from z=0 to z=1 to
investigate resolution effects on the properties of the velocity field. To
quantify the structure of the velocity field we also perform a kinemetry
analysis. If the galaxy is undisturbed we find that the rotation curve
extracted from the 2D field agrees well with long-slit rotation curves. This is
not true for interacting systems, as the kinematic axis is not well defined and
does in general not coincide with the photometric axis of the system. For large
(Milky way type) galaxies we find that distortions are still visible at
intermediate redshifts but partly smeared out. Thus a careful analysis of the
velocity field is necessary before using it for a Tully-Fisher study. For small
galaxies (disc scale length ~2 kpc) even strong distortions are not visible in
the velocity field at z~0.5 with currently available angular resolution.
Therefore we conclude that current distant Tully-Fisher studies cannot give
reliable results for low-mass systems. Additionally to these studies we confirm
the power of near-infrared integral field spectrometers in combination with
adaptive optics (such as SINFONI) to study velocity fields of galaxies at high
redshift (z~2).Comment: 12 pages, 18 figures, accepted for publication in A&A, high
resolution version can be found at
http://astro.uibk.ac.at/~thomas/kronberger.pd
Internal kinematics of spiral galaxies in distant clusters III. Velocity fields from FORS2/MXU spectroscopy
(Abridged) We study the impact of cluster environment on the evolution of
spiral galaxies by examining their structure and kinematics. Rather than
two-dimensional rotation curves, we observe complete velocity fields by placing
three adjacent and parallel FORS2 MXU slits on each object, yielding several
emission and absorption lines. The gas velocity fields are reconstructed and
decomposed into circular rotation and irregular motions using kinemetry. To
quantify irregularities in the gas kinematics, we define three parameters:
sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the
average misalignment between kinematic and photometric position angles) and
k_{3,5} (squared sum of the higher order Fourier terms). Using local,
undistorted galaxies from SINGS, these can be used to establish the regularity
of the gas velocity fields. Here we present the analysis of 22 distant galaxies
in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find
both field (4 out of 8) and cluster (3 out of 4) galaxies with velocity fields
that are both irregular and asymmetric. We show that these fractions are
underestimates of the actual number of galaxies with irregular velocity fields.
The values of the (ir)regularity parameters for cluster galaxies are not very
different from those of the field galaxies, implying that there are isolated
field galaxies that are as distorted as the cluster members. None of the
deviations in our small sample correlate with photometric/structural properties
like luminosity or disk scale length in a significant way.
Our 3D-spectroscopic method successfully maps the velocity field of distant
galaxies, enabling the importance and efficiency of cluster specific
interactions to be assessed quantitatively.Comment: accepted for publication in A&A, high resolution version available at
http://www.astro.rug.nl/~kutdemir/papers
The effects of ram-pressure stripping on the internal kinematics of simulated spiral galaxies
We investigate the influence of ram-pressure stripping on the internal gas
kinematics of simulated spiral galaxies. Additional emphasis is put on the
question of how the resulting distortions of the gaseous disc are visible in
the rotation curve and/or the full 2D velocity field of galaxies at different
redshifts. A Milky-Way type disc galaxy is modelled in combined
N-body/hydrodynamic simulations with prescriptions for cooling, star formation,
stellar feedback, and galactic winds. This model galaxy moves through a
constant density and temperature gas, which has parameters similar to the
intra-cluster medium (ICM). Rotation curves (RCs) and 2D velocity fields of the
gas are extracted from these simulations in a way that follows the procedure
applied to observations of distant, small, and faint galaxies as closely as
possible. We find that the appearance of distortions of the gaseous disc due to
ram-pressure stripping depends on the direction of the acting ram pressure. In
the case of face-on ram pressure, the distortions mainly appear in the outer
parts of the galaxy in a very symmetric way. In contrast, in the case of
edge-on ram pressure we find stronger distortions. The 2D velocity field also
shows signatures of the interaction in the inner part of the disc. At angles
smaller than 45 degrees between the ICM wind direction and the disc, the
velocity field asymmetry increases significantly compared to larger angles.
Compared to distortions caused by tidal interactions, the effects of
ram-pressure stripping on the velocity field are relatively low in all cases
and difficult to observe at intermediate redshift in seeing-limited
observations. (abridged)Comment: 9 pages, 11 figures, accepted for publication in A&
Ram pressure stripping of the multiphase ISM in the Virgo cluster spiral galaxy NGC 4438
Ram pressure stripping of the multiphase ISM is studied in the perturbed
Virgo cluster spiral galaxy NGC 4438. This galaxy underwent a tidal interaction
~100 Myr ago and is now strongly affected by ram pressure stripping. Deep VLA
radio continuum observations at 6 and 20 cm are presented. We detect prominent
extraplanar emission to the west of the galactic center, which extends twice as
far as the other tracers of extraplanar material. The spectral index of the
extraplanar emission does not steepen with increasing distance from the galaxy.
This implies in situ re-acceleration of relativistic electrons. The comparison
with multiwavelength observations shows that the magnetic field and the warm
ionized interstellar medium traced by Halpha emission are closely linked. The
kinematics of the northern extraplanar Halpha emission, which is ascribed to
star formation, follow those of the extraplanar CO emission. In the western and
southern extraplanar regions, the Halpha measured velocities are greater than
those of the CO lines. We suggest that the ionized gas of this region is
excited by ram pressure. The spatial and velocity offsets are consistent with a
scenario where the diffuse ionized gas is more efficiently pushed by ram
pressure stripping than the neutral gas. We suggest that the recently found
radio-deficient regions compared to 24 mum emission are due to this difference
in stripping efficiency.Comment: 8 pages, 6 figures, A&A, accepted for publicatio
Political branding: sense of identity or identity crisis? An investigation of the transfer potential of the brand identity prism to the UK Conservative Party
Brands are strategic assets and key to achieving a competitive advantage. Brands can be seen as a heuristic device, encapsulating a series of values that enable the consumer to make quick and efficient choices. More recently, the notion of a political brand and the rhetoric of branding have been widely adopted by many political parties as they seek to differentiate themselves, and this has led to an emerging interest in the idea of the political brand. Therefore, this paper examines the UK Conservative Party brand under David Cameron’s leadership and examines the applicability of Kapferer’s brand identity prism to political branding. This paper extends and operationalises the brand identity prism into a ‘political brand identity network’ which identifies the inter-relatedness of the components of the corporate political brand and the candidate political brand. Crucial for practitioners, this model can demonstrate how the brand is presented and communicated to the electorate and serves as a useful mechanism to identify consistency within the corporate and candidate political brands
The moderating effect of brand orientation on inter-firm market orientation and performance
While prior research has shown that market and brand orientation
are key contributors to successful business performance, research to
date has not fully explored how inter firm collaboration for these two
key orientations can enhance business performance. The purpose of
the paper is to investigate the relationship between inter-firm market
and performance; to test for the moderating role of brand orientation
in that relationship. A total of 169 completed pairs of surveys were
collected of small and medium enterprises operating internationally
in a variety of industries in Switzerland. The results show that inter-firm
market and brand orientation are two antecedents of marketing and
financial performance. The impact of inter-firm market on marketing
and financial performance is significant when the brand orientation
is favorable. This study extends previous research by examining the
moderating role of brand orientation on inter firm market orientation,
which is important, especially for firms wanting to increase their brand
reputation by entering into partnerships with other firms. Further
research is indicated, to identify the key moderators of the driving
force of inter-firm market in relation to business performance and
the reason why maintaining a strong brand presence is important in
the international marketplace
Designing Luxury Experience
In luxury brand management, experiences are essential. However, most of what we know about designing customer experiences originates from work developed with and/or for mass brands. Luxury brands are conceptually different and require a specific approach to brand management. Using a grounded theory approach, we present a framework consisting of seven principles to design luxury experience. Our research suggests that to create a true luxury experience brands should go beyond traditional frameworks of brand management. By compiling best practices and the commonalities amongst the interviewed companies' most successful efforts to create a luxury experience, the framework can help brands to implement a trading-up strategy: Luxury brands can enhance their desirability by offering a true luxury experience and non-luxury brands can adopt principles of luxury experience and become life-style brands
- …