804 research outputs found

    N-String Vertices in String Field Theory

    Get PDF
    We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the ``comma" representation of String Field Theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of N strings, for any arbitrary N, is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.Comment: 22 pages, A4-Latex (latex twice), FTUV IFI

    Biconformal supergravity and the AdS/CFT conjecture

    Get PDF
    Biconformal supergravity models provide a new gauging of the superconformal group relevant to the Maldacena conjecture. Using the group quotient method to biconformally gauge SU(2,2|N), we generate a 16-dim superspace. We write the most general even- and odd-parity actions linear in the curvatures, the bosonic sector of which is known to descend to general relativity on a 4-dim manifold.Comment: 35 pages, adjusted group nomenclature, 1 reference and acknowledgements adde

    The de Sitter Relativistic Top Theory

    Full text link
    We discuss the relativistic top theory from the point of view of the de Sitter (or anti de Sitter) group. Our treatment rests on Hanson-Regge's spherical relativistic top lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with the Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory.Comment: 25 pages, Latex,commnets and references adde

    Gauge theories of spacetime symmetries

    Get PDF
    Gauge theories of conformal spacetime symmetries are presented which merge features of Yang-Mills theory and general relativity in a new way. The models are local but nonpolynomial in the gauge fields, with a nonpolynomial structure that can be elegantly written in terms of a metric (or vielbein) composed of the gauge fields. General relativity itself emerges from the construction as a gauge theory of spacetime translations. The role of the models within a general classification of consistent interactions of gauge fields is discussed as well.Comment: 8 pages, revtex; v2: minor improvements of text and formulas; v3: typo in formula after eq. (35) correcte

    Gravitational coupling to two-particle bound states and momentum conservation in deep inelastic scattering

    Full text link
    The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two 1+1 dimensional examples, it shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantilly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent

    A Dual Four Dimensional Superstring

    Full text link
    The 26 dimensional bosonic string, first suggested by Nambu and Goto, is reduced to a four dimensional superstring by using two species of 6 and 5 Majorana fermions as proposed by Deo. These two species of fermions differ in their 'neutrino-like' phase, and are vectors in the bosonic representation SO(d-1,1).Using Polchinski's equivalence between operators and states, we can write the Virasoro generators for 4 dimensional string theory. The theory is shown to give the same results as given by other superstrings and also reveals the well known aspects of four dimensional string theory.The bosons and the fermions are found to be the basis for constructing this string theory which includes gravity and exhibits strong-weak coupling duality as well as the usual electric-magnetic duality. This formalism is used to calculate the metric tensor as well as the entropy area relation for a black hole.Comment: 10 page

    Four dimensional "old minimal" N=2 supersymmetrization of R^4

    Get PDF
    We write in superspace the lagrangian containing the fourth power of the Weyl tensor in the "old minimal" d=4, N=2 supergravity, without local SO(2) symmetry. Using gauge completion, we analyze the lagrangian in components. We find out that the auxiliary fields which belong to the Weyl and compensating vector multiplets have derivative terms and therefore cannot be eliminated on-shell. Only the auxiliary fields which belong to the compensating nonlinear multiplet do not get derivatives and could still be eliminated; we check that this is possible in the leading terms of the lagrangian. We compare this result to the similar one of "old minimal" N=1 supergravity and we comment on possible generalizations to other versions of N=1,2 supergravity.Comment: 31 pages, no figures. Minor corrections. Details of the full calculation included as an appendix. Reference adde

    Thermal history of the string universe

    Full text link
    Thermal history of the string universe based on the Brandenberger and Vafa's scenario is examined. The analysis thereby provides a theoretical foundation of the string universe scenario. Especially the picture of the initial oscillating phase is shown to be natural from the thermodynamical point of view. A new tool is employed to evaluate the multi state density of the string gas. This analysis points out that the well-known functional form of the multi state density is not applicable for the important region T≤THT \leq T_H, and derives a correct form of it.Comment: 39 pages, no figures, use revtex.sty, aps.sty, aps10.sty & preprint.st

    The Influence of World-Sheet Boundaries on Critical Closed String Theory

    Get PDF
    This paper considers interactions between closed strings and open strings satisfying either Neumann or constant (point-like) Dirichlet boundary conditions in a BRST formalism in the critical dimension. With Neumann conditions this reproduces the well-known stringy version of the Higgs mechanism. With Dirichlet conditions the open-string states correspond to either auxiliary or Lagrange multiplier target-space fields and their coupling to the closed-string sector leads to constraints on the closed-string spectrum.Comment: 15 pages, QMW-92-18;NI9201

    Do Evaporating Black Holes Form Photospheres?

    Full text link
    Several authors, most notably Heckler, have claimed that the observable Hawking emission from a microscopic black hole is significantly modified by the formation of a photosphere around the black hole due to QED or QCD interactions between the emitted particles. In this paper we analyze these claims and identify a number of physical and geometrical effects which invalidate these scenarios. We point out two key problems. First, the interacting particles must be causally connected to interact, and this condition is satisfied by only a small fraction of the emitted particles close to the black hole. Second, a scattered particle requires a distance ~ E/m_e^2 for completing each bremsstrahlung interaction, with the consequence that it is improbable for there to be more than one complete bremsstrahlung interaction per particle near the black hole. These two effects have not been included in previous analyses. We conclude that the emitted particles do not interact sufficiently to form a QED photosphere. Similar arguments apply in the QCD case and prevent a QCD photosphere (chromosphere) from developing when the black hole temperature is much greater than Lambda_QCD, the threshold for QCD particle emission. Additional QCD phenomenological arguments rule out the development of a chromosphere around black hole temperatures of order Lambda_QCD. In all cases, the observational signatures of a cosmic or Galactic halo background of primordial black holes or an individual black hole remain essentially those of the standard Hawking model, with little change to the detection probability. We also consider the possibility, as proposed by Belyanin et al. and D. Cline et al., that plasma interactions between the emitted particles form a photosphere, and we conclude that this scenario too is not supported.Comment: version published in Phys Rev D 78, 064043; 25 pages, 3 figures; includes discussion on extending our analysis to TeV-scale, higher-dimensional black hole
    • …
    corecore