1,901 research outputs found

    Determining source cumulants in femtoscopy with Gram-Charlier and Edgeworth series

    Full text link
    Lowest-order cumulants provide important information on the shape of the emission source in femtoscopy. For the simple case of noninteracting identical particles, we show how the fourth-order source cumulant can be determined from measured cumulants in momentum space. The textbook Gram-Charlier series is found to be highly inaccurate, while the related Edgeworth series provides increasingly accurate estimates. Ordering of terms compatible with the Central Limit Theorem appears to play a crucial role even for nongaussian distributions.Comment: 11 pages, 2 figure

    Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    Get PDF
    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein

    Cooperative gas adsorption without a phase transition in metal-organic frameworks

    Get PDF
    Cooperative adsorption of gases by porous frameworks permits more efficient uptake and removal than does the more usual non-cooperative (Langmuir-type) adsorption. Cooperativity, signaled by a step-like isotherm, is usually attributed to a phase transition of the framework. However, the class of metal-organic frameworks mmen-M2_2(dobpdc) exhibit cooperative adsorption of CO2 but show no evidence of a phase transition. Here we show how cooperativity emerges in these frameworks in the absence of a phase transition. We use a combination of quantum and statistical mechanics to show that cooperativity results from a sharp but finite increase, with pressure, of the mean length of chains of CO2 molecules that polymerize within the framework. Our study provides microscopic understanding of the emergent features of cooperative binding, including the position, slope and height of the isotherm step, and indicates how to optimize gas storage and separation in these materials.Comment: 18 pages, 11 figure

    Nanoscale phase quantification in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 relaxor ferroelectrics by means of Na 23 NMR

    Get PDF
    We address the unsolved question on the structure of relaxor ferroelectrics at the atomic level by characterizing lead-free piezoceramic solid solutions (100-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT) (for x=1,4,6, and 15). Based on the relative intensity between spectral components in quadrupolar perturbed Na23 nuclear magnetic resonance, we present direct evidence of the coexistence of cubic and polar local symmetries in these relaxor ferroelectrics. In addition, we demonstrate how the cubic phase vanishes whenever a ferroelectric state is induced, either by field cooling or changing the dopant amount, supporting the relation between this cubic phase and the relaxor state.open0

    3D Spectrophotometry of Planetary Nebulae in the Bulge of M31

    Full text link
    We introduce crowded field integral field (3D) spectrophotometry as a useful technique for the study of resolved stellar populations in nearby galaxies. As a methodological test, we present a pilot study with selected extragalactic planetary nebulae (XPN) in the bulge of M31, demonstrating how 3D spectroscopy is able to improve the limited accuracy of background subtraction which one would normally obtain with classical slit spectroscopy. It is shown that due to the absence of slit effects, 3D is a most suitable technique for spectrophometry. We present spectra and line intensities for 5 XPN in M31, obtained with the MPFS instrument at the Russian 6m BTA, INTEGRAL at the WHT, and with PMAS at the Calar Alto 3.5m Telescope. Using 3D spectra of bright standard stars, we demonstrate that the PSF is sampled with high accuracy, providing a centroiding precision at the milli-arcsec level. Crowded field 3D spectrophotometry and the use of PSF fitting techniques is suggested as the method of choice for a number of similar observational problems, including luminous stars in nearby galaxies, supernovae, QSO host galaxies, gravitationally lensed QSOs, and others.Comment: (1) Astrophysikalisches Institut Potsdam, (2) University of Durham. 18 pages, 11 figures, accepted for publication in Ap

    Controlled Assembly of Macromolecular β-Sheet Fibrils

    Get PDF
    Construction of functional molecular devices by directed assembly processes is one of the main challenges in the field of nanotechnology. Many approaches to this challenge use biological assembly as a source of inspiration for the build up of new materials with controlled organization at the nanoscale. In particular, the self-assembly properties of β-sheet peptides have been used in the design of supramolecular materials, such as tapes, nanotubes, and fibrils

    Integrative analysis of the Trypanosoma brucei gene expression cascade predicts differential regulation of mRNA processing and unusual control of ribosomal protein expression

    Get PDF
    Background: Trypanosoma brucei is a unicellular parasite which multiplies in mammals (bloodstream form) and Tsetse flies (procyclic form). Trypanosome RNA polymerase II transcription is polycistronic, individual mRNAs being excised by trans splicing and polyadenylation. We previously made detailed measurements of mRNA half-lives in bloodstream and procyclic forms, and developed a mathematical model of gene expression for bloodstream forms. At the whole transcriptome level, many bloodstream-form mRNAs were less abundant than was predicted by the model. Results: We refined the published mathematical model and extended it to the procyclic form. We used the model, together with known mRNA half-lives, to predict the abundances of individual mRNAs, assuming rapid, unregulated mRNA processing; then we compared the results with measured mRNA abundances. Remarkably, the abundances of most mRNAs in procyclic forms are predicted quite well by the model, being largely explained by variations in mRNA decay rates and length. In bloodstream forms substantially more mRNAs are less abundant than predicted. We list mRNAs that are likely to show particularly slow or inefficient processing, either in both forms or with developmental regulation. We also measured ribosome occupancies of all mRNAs in trypanosomes grown in the same conditions as were used to measure mRNA turnover. In procyclic forms there was a weak positive correlation between ribosome density and mRNA half-life, suggesting cross-talk between translation and mRNA decay; ribosome density was related to the proportion of the mRNA on polysomes, indicating control of translation initiation. Ribosomal protein mRNAs in procyclics appeared to be exceptionally rapidly processed but poorly translated. Conclusions: Levels of mRNAs in procyclic form trypanosomes are determined mainly by length and mRNA decay, with some control of precursor processing. In bloodstream forms variations in nuclear events play a larger role in transcriptome regulation, suggesting aquisition of new control mechanisms during adaptation to mammalian parasitism

    Clinical population pharmacokinetics and toxicodynamics of linezolid

    Get PDF
    Thrombocytopenia is a common side effect of linezolid, an oxazolidinone antibiotic often used to treat multidrug-resistant Gram-positive bacterial infections. Various risk factors have been suggested, including linezolid dose and duration of therapy, baseline platelet counts, and renal dysfunction; still, the mechanisms behind this potentially treatment-limiting toxicity are largely unknown. A clinical study was conducted to investigate the relationship between linezolid pharmacokinetics and toxico-dynamics and inform strategies to prevent and manage linezolid-associated toxicity. Forty-one patients received 42 separate treatment courses of linezolid (600 mg every 12 h). A new mechanism-based, population pharmacokinetic/toxicodynamic model was developed to describe the time course of plasma linezolid concentrations and platelets. A linezolid concentration of 8.06 mg/ liter (101% between-patient variability) inhibited the synthesis of platelet precursor cells by 50%. Simulations predicted treatment durations of 5 and 7 days to carry a substantially lower risk than 10- to 28-day therapy for platelet nadirs o

    A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 16 (2016): 10899-10910, doi:10.5194/acp-16-10899-2016.Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010, ranging in latitude from 60° N to 77° S, show that negative saturations extend over most of the surface ocean. Corrected for physical effects associated with radiative heat flux, mixing, and air injection, these anomalies were commonly on the order of −5 to −10 %, with no clear relationship to temperature, productivity, or other gross surface water characteristics other than being more negative in association with upwelling. The atmospheric flux required to sustain these undersaturations is 12.4 (9.4–15.4) Gg yr−1, a loss rate implying a partial atmospheric lifetime with respect to the oceanic loss of 183 (147–241) yr and that  ∼  18 (14–22)  % of atmospheric CCl4 is lost to the ocean. Although CCl4 hydrolyzes in seawater, published hydrolysis rates for this gas are too slow to support such large undersaturations, given our current understanding of air–sea gas exchange rates. The even larger undersaturations in intermediate depth waters associated with reduced oxygen levels, observed in this study and by other investigators, strongly suggest that CCl4 is ubiquitously consumed at mid-depth, presumably by microbiota. Although this subsurface sink creates a gradient that drives a downward flux of CCl4, the gradient alone is not sufficient to explain the observed surface undersaturations. Since known chemical losses are likewise insufficient to sustain the observed undersaturations, this suggests a possible biological sink for CCl4 in surface or near-surface waters of the ocean. The total atmospheric lifetime for CCl4, based on these results and the most recent studies of soil uptake and loss in the stratosphere is now 32 (26–43) yr.This research could not have been done without the support of our various institutions and the programs through which they support science, including funds at various times from NASA’s Upper Atmosphere Research Program, the US Department of Energy, NOAA’s Climate Program Office, the Atmospheric and Geosciences sections of the National Science Foundation, and the National Research Council of the US National Academies of Science
    corecore