417 research outputs found
Resonance trapping and saturation of decay widths
Resonance trapping appears in open many-particle quantum systems at high
level density when the coupling to the continuum of decay channels reaches a
critical strength. Here a reorganization of the system takes place and a
separation of different time scales appears. We investigate it under the
influence of additional weakly coupled channels as well as by taking into
account the real part of the coupling term between system and continuum. We
observe a saturation of the mean width of the trapped states. Also the decay
rates saturate as a function of the coupling strength. The mechanism of the
saturation is studied in detail. In any case, the critical region of
reorganization is enlarged. When the transmission coefficients for the
different channels are different, the width distribution is broadened as
compared to a chi_K^2 distribution where K is the number of channels. Resonance
trapping takes place before the broad state overlaps regions beyond the
extension of the spectrum of the closed system.Comment: 18 pages, 8 figures, accepted by Phys. Rev.
Interfering Doorway States and Giant Resonances. I: Resonance Spectrum and Multipole Strengths
A phenomenological schematic model of multipole giant resonances (GR) is
considered which treats the external interaction via common decay channels on
the same footing as the coherent part of the internal residual interaction. The
damping due to the coupling to the sea of complicated states is neglected. As a
result, the formation of GR is governed by the interplay and competition of two
kinds of collectivity, the internal and the external one. The mixing of the
doorway components of a GR due to the external interaction influences
significantly their multipole strengths, widths and positions in energy. In
particular, a narrow resonance state with an appreciable multipole strength is
formed when the doorway components strongly overlap.Comment: 20 pages, LaTeX, 3 ps-figures, to appear in PRC (July 1997
Collectivity Embedded in Complex Spectra of Finite Interacting Fermi Systems: Nuclear Example
The mechanism of collectivity coexisting with chaos in a finite system of
strongly interacting fermions is investigated. The complex spectra are
represented in the basis of two-particle two-hole states describing the nuclear
double-charge exchange modes in Ca. An example of
excitations shows that the residual interaction, which generically implies
chaotic behavior, under certain specific and well identified conditions may
create strong transitions, even much stronger than those corresponding to a
pure mean-field picture. Such an effect results from correlations among the
off-diagonal matrix elements, is connected with locally reduced density of
states and a local minimum in the information entropy.Comment: 16 pages, LaTeX2e, REVTeX, 8 PostScript figures, to appear in
Physical Review
Interfering resonances in a quantum billiard
We present a method for numerically obtaining the positions, widths and
wavefunctions of resonance states in a two dimensional billiard connected to a
waveguide. For a rectangular billiard, we study the dynamics of three resonance
poles lying separated from the other ones. As a function of increasing coupling
strength between the waveguide and the billiard two of the states become
trapped while the width of the third one continues to increase for all coupling
strengths. This behavior of the resonance poles is reflected in the time delay
function which can be studied experimentally.Comment: 2 pages, 3 figure
Optical and Radio Properties of Extragalactic Sources Observed by the FIRST and SDSS Surveys
We discuss the optical and radio properties of 30,000 FIRST sources
positionally associated with an SDSS source in 1230 deg of sky. The
majority (83%) of the FIRST sources identified with an SDSS source brighter
than r=21 are optically resolved. We estimate an upper limit of 5% for the
fraction of quasars with broad-band optical colors indistinguishable from those
of stars. The distribution of quasars in the radio flux -- optical flux plane
supports the existence of the "quasar radio-dichotomy"; 8% of all quasars with
i<18.5 are radio-loud and this fraction seems independent of redshift and
optical luminosity. The radio-loud quasars have a redder median color by 0.08
mag, and a 3 times larger fraction of objects with red colors. FIRST galaxies
represent 5% of all SDSS galaxies with r<17.5, and 1% for r<20, and are
dominated by red galaxies. Magnitude and redshift limited samples show that
radio galaxies have a different optical luminosity distribution than non-radio
galaxies selected by the same criteria; when galaxies are further separated by
their colors, this result remains valid for both blue and red galaxies. The
distributions of radio-to-optical flux ratio are similar for blue and red
galaxies in redshift-limited samples; this similarity implies that the
difference in their luminosity functions, and resulting selection effects, are
the dominant cause for the preponderance of red radio galaxies in flux-limited
samples. We confirm that the AGN-to-starburst galaxy number ratio increases
with radio flux, and find that radio emission from AGNs is more concentrated
than radio emission from starburst galaxies (abridged).Comment: submitted to AJ, color gif figures, PS figures available from
[email protected]
On the Control of the Invasive Banana Bunchy Top Disease in Africa: Lessons from a Conciliate Interaction
Controlling an invasive species, in Agriculture, is a context variable activity, borrowing the technical advances of numerous sciences, including the insect sciences. The Banana bunchy top disease (BBTD), caused by the bunchy top virus (BBTV), is spread between regions through planting infected suckers and locally by the banana aphid feeding off infected plants. It is present in 16 countries in Sub Saharan Africa; and causes accelerating production losses and reduced access to clean seed. Although yield decline is more rapid in some cultivars, none is resistant. Our work towards recovery of banana production in nine BBTD-affected sites in eight countries; thus includes a cross talk between different natural sciences, social sciences and policy studies, relying on existing knowledge and technologies: reliable clean seed supply system and tactics to reduce re-infection pressure, vector entomology, virus detection, epidemiology, imaging and mapping. We developed a non-intrusive DNA extraction methods and used it to amplify the mtCOI gene to differentiate the two species of banana aphids, Pentalonia nigronervosa and P. caladii while preserving voucher specimens for morphological studies. ELISA, key diagnostic approach should be supplemented by early symptom recognition. We also studied cropping systems and banana diversity as potential options and indicators of long term BBTD control, as varieties showed different attractiveness to the vector and human preferences. Seed systems studies revealed that clean seed systems (like other control approaches) need to incorporate diversity, vector, human behaviour and policy. BBTD is a spreading invasive disease, a potential model in regional invasive species management. What then is our role as Insect Scientists working in this region in limiting of the spread of BBTD? How can we foster an interplay between entomology, ecology, other natural scientists, social sciences and regulatory services and the private sector to prevent its spread to the banana growing areas in Africa. (Résumé d'auteur
A New Physical Picture of Pairing Mechanism in Superconductors: Could the Electron be a Composite Particle?
The physical pictures of the electron pairing structure and pairing
mechanisms in superconductors are reviewed. An initial idea for a new physical
picture of the origin and nature of the pairing is proposed. The idea is based
on the assumption that the electron is no longer a single fundamental but a
composite particle. This property is hidden in the normal state. How a natural
pairing could occur in the superconducting state and the processes closely
related to this change inside the atom are developed in a new physical picture
with new insight(although it needs verification and real evidence for now). An
attempt, to show that a zero resistance to a direct current and Josephson
effects could be used as example evidences for this assumption, is presented by
means of this new insight in general schematical analogy. A possible new
research direction, hopefully to achieve room temperature superconductors, is
suggested as a consequence.Comment: 17 pages, 12 figures, 46 Reference
Double-Peaked Low-Ionization Emission Lines in Active Galactic Nuclei
We present a new sample of 116 double-peaked Balmer line Active Galactic
Nuclei (AGN) selected from the Sloan Digital Sky Survey. Double-peaked emission
lines are believed to originate in the accretion disks of AGN, a few hundred
gravitational radii (Rg) from the supermassive black hole. We investigate the
properties of the candidate disk emitters with respect to the full sample of
AGN over the same redshifts, focusing on optical, radio and X-ray flux, broad
line shapes and narrow line equivalent widths and line flux-ratios. We find
that the disk-emitters have medium luminosities (~10^44erg/s) and FWHM on
average six times broader than the AGN in the parent sample. The double-peaked
AGN are 1.6 times more likely to be radio-sources and are predominantly (76%)
radio quiet, with about 12% of the objects classified as LINERs. Statistical
comparison of the observed double-peaked line profiles with those produced by
axisymmetric and non-axisymmetric accretion disk models allows us to impose
constraints on accretion disk parameters. The observed Halpha line profiles are
consistent with accretion disks with inclinations smaller than 50 deg, surface
emissivity slopes of 1.0-2.5, outer radii larger than ~2000 Rg, inner radii
between 200-800Rg, and local turbulent broadening of 780-1800 km/s. The
comparison suggests that 60% of accretion disks require some form of asymmetry
(e.g., elliptical disks, warps, spiral shocks or hot spots).Comment: 60 pages, 19 figures, accepted for publication in AJ. For high
quality figures and full tables, please see
http://astro.princeton.edu/~iskra/disks.htm
- …
