3,510 research outputs found
Thermal conductivity of InAs/GaSb superlattice
The cross-plane thermal conductivity of a type II InAs/GaSb superlattice
(T2SL) is measured from 13 K to 300 K using the 3{\omega} method. Thermal
conductivity is reduced by up to 2 orders of magnitude relative to the GaSb
bulk substrate. The low thermal conductivity of around 1-8 W/m\cdotK may serve
as an advantage for thermoelectric applications at low temperatures, while
presenting a challenge for T2SL quantum cascade lasers and high power light
emitting diodes. We introduce a power-law approximation to model
non-linearities in the thermal conductivity, resulting in increased or
decreased peak temperature for negative or positive exponents, respectively.Comment: 4 pages, 3 figure
Fluctuation-Driven Molecular Transport in an Asymmetric Membrane Channel
Channel proteins, that selectively conduct molecules across cell membranes,
often exhibit an asymmetric structure. By means of a stochastic model, we argue
that channel asymmetry in the presence of non-equilibrium fluctuations, fueled
by the cell's metabolism as observed recently, can dramatically influence the
transport through such channels by a ratchet-like mechanism. For an
aquaglyceroporin that conducts water and glycerol we show that a previously
determined asymmetric glycerol potential leads to enhanced inward transport of
glycerol, but for unfavorably high glycerol concentrations also to enhanced
outward transport that protects a cell against poisoning.Comment: REVTeX4, 4 pages, 3 figures; Accepted for publication in Phys. Rev.
  Let
Recommended from our members
Influence of fluoride on the mineralization of collagen via the polymer-induced liquid-precursor (PILP) process.
ObjectiveThe polymer-induced liquid-precursor (PILP) mineralization process has been shown to remineralize artificial dentin lesions to levels consistent with those of native dentin. However, nanoindentation revealed that the moduli of those remineralized lesions were only ∼50% that of native dentin. We hypothesize that this may be due to the PILP process having been previously optimized to obtain high amounts (∼70wt%) of intrafibrillar crystals, but without sufficient interfibrillar mineral, another significant component of dentin.MethodsFluoride was added to the PILP-mineralization of collagen from rat tail tendon at varying concentrations to determine if a better balance of intra- versus inter-fibrillar mineralization could be obtained, as determined by electron microscopy. Nanoindentation was used to determine if fluoridated apatite could improve the mechanical properties of the composites.ResultsFluoride was successfully incorporated into the PILP-mineralization of rat tail tendon and resulted in collagen-mineral composite systems with the mineral phase of hydroxyapatite containing various levels of fluoridation. As the fluoride concentration increased, the crystals became larger and more rod-like, with an increasing tendency to form on the fibril surfaces rather than the interior. Nanomechanical testing of the mineralized tendons revealed that fluoride addition did not increase modulus over PILP mineralization alone. This likely resulted from the separated nature of collagen fibrils that comprise tendon, which does not provide lateral reinforcement and therefore may not be suited for the compressive loads of nanoindentation.SignificanceThis work contributes to the development of minimally invasive approaches to caries treatment by determining if collagen can be functionally mineralized
Dynamics of Dissipative Quantum Hall Edges
We examine the influence of the edge electronic density profile and of
dissipation on edge magnetoplasmons in the quantum Hall regime, in a
semiclassical calculation. The equilibrium electron density on the edge,
obtained using a Thomas-Fermi approach, has incompressible stripes produced by
energy gaps responsible for the quantum Hall effect. We find that these stripes
have an unobservably small effect on the edge magnetoplasmons. But dissipation,
included phenomenologically in the local conductivity, proves to produce
significant oscillations in the strength and speed of edge magnetoplasmons in
the quantum Hall regime.Comment: 23 pages including 10 figure
Improving the Sensitivity of LISA
It has been shown in the past, that the six Doppler data streams obtained
LISA configuration can be combined by appropriately delaying the data streams
for cancelling the laser frequency noise. Raw laser noise is several orders of
magnitude above the other noises and thus it is essential to bring it down to
the level of shot, acceleration noises. A rigorous and systematic formalism
using the techniques of computational commutative algebra was developed which
generates all the data combinations cancelling the laser frequency noise. The
relevant data combinations form a first module of syzygies. In this paper we
use this formalism for optimisation of the LISA sensitivity by analysing the
noise and signal covariance matrices. The signal covariance matrix, averaged
over polarisations and directions, is calculated for binaries whose frequency
changes at most adiabatically. We then present the extremal SNR curves for all
the data combinations in the module. They correspond to the eigenvectors of the
noise and signal covariance matrices. We construct LISA `network' SNR by
combining the outputs of the eigenvectors which improves the LISA sensitivity
substantially. The maximum SNR curve can yield an improvement upto 70 % over
the Michelson, mainly at high frequencies, while the improvement using the
network SNR ranges from 40 % to over 100 %. Finally, we describe a simple toy
model, in which LISA rotates in a plane. In this analysis, we estimate the
improvement in the LISA sensitivity, if one switches from one data combination
to another as it rotates. Here the improvement in sensitivity, if one switches
optimally over three cyclic data combinations of the eigenvector is about 55 %
on an average over the LISA band-width. The corresponding SNR improvement is 60
%, if one maximises over the module.Comment: 16 pages, 10 figures, Submitted to Class. Quant. Gravit
SMEs and Certified Management Standards: The Effect of Motives and Timing on Implementation and Commitment
Existing research on certifiable management standards (CMS) and corporate social responsibility (CSR) tends to focus on large companies and is characterised by disagreement about the role of these standards as drivers of CSR. We contribute to the literature by shifting the analytical focus to the behaviour of small and medium-sized enterprises (SMEs) that subscribe to multiple CSR related standards. We argue that, in respect of motive and commitment, SMEs are not as different from large companies as the literature suggests, as they are guided by similar institutional and economic motives. Results, based on ISO 9001, ISO 14001 and OHSAS 18001 certified SMEs in Greece, demonstrate that later adopters are more susceptible to coercive and mimetic motives and are less likely to commit fully to the CMS requirements, while earlier adopters react to normative motives and considerations of internal efficiency gains and tend to carry out CMS requirements with greater diligence
Optical Conductivity and Hall Coefficient in High-Tc Superconductors: Significant Role of Current Vertex Corrections
We study AC conductivities in high-Tc cuprates, which offer us significant
information to reveal the true electronic ground states. Based on the
fluctuation-exchange (FLEX) approximation, current vertex corrections (CVC's)
are correctly taken into account to satisfy the conservation laws. We find the
significant role of the CVC's on the optical Hall conductivity in the presence
of strong antiferromagnetic (AF) fluctuations. This fact leads to the failure
of the relaxation time approximation (RTA). As a result, experimental highly
unusual behaviors, (i) prominent frequency and temperature dependences of the
optical Hall coefficient, and (ii) simple Drude form of the optical Hall andge
for wide range of frequencies, are satisfactorily reproduced. In conclusion,
both DC and AC transport phenomena in (slightly under-doped) high-Tc cuprates
can be explained comprehensively in terms of nearly AF Fermi liquid, if one
take the CVC's into account.Comment: 5 page
Respiration and Heart Rate at the Surface between Dives in Northern Elephant Seals
All underwater activities of diving mammals are constrained by the need for surface gas exchange. Our aim was to measure respiratory rate (fb) and heart rate (fh) at the surface between dives in free-ranging northern elephant seals Mirounga angustirostris. We recorded fb and fh acoustically in six translocated juveniles, 1.8-2. 4 years old, and three migrating adult males from the rookery at Ano Nuevo, California, USA. To each seal, we attached a diving instrument to record the diving pattern, a satellite tag to track movements and location, a digital audio tape recorder or acoustic datalogger with an external hydrophone to record the sounds of respiration and fh at the surface, and a VHF transmitter to facilitate recovery. During surface intervals averaging 2.2+/−0.4 min, adult males breathed a mean of 32.7+/−5.4 times at a rate of 15. 3+/−1.8 breaths min(−)(1) (means +/− s.d., N=57). Mean fh at the surface was 84+/−3 beats min(−)(1). The fb of juveniles was 26 % faster than that of adult males, averaging 19.2+/−2.2 breaths min(−)(1) for a mean total of 41.2+/−5.0 breaths during surface intervals lasting 2.6+/−0.31 min. Mean fh at the surface was 106+/−3 beats min(−)(1). fb and fh did not change significantly over the course of surface intervals. Surface fb and fh were not clearly associated with levels of exertion, such as rapid horizontal transit or apparent foraging, or with measures of immediately previous or subsequent diving performance, such as diving duration, diving depth or swimming speed. Together, surface respiration rate and the duration of the preceding dive were significant predictors of surface interval duration. This implies that elephant seals minimize surface time spent loading oxygen depending on rates of oxygen uptake and previous depletion of stores
Isolation rearing impairs novel object recognition and attentional set shifting performance in female rats
YesIt has been suggested that the isolation rearing paradigm models certain
aspects of schizophrenia symptomatology. This study aimed to investigate
whether isolation rearing impairs rats’ performance in two models of
cognition: the novel object recognition (NOR) and attentional set-shifting
tasks, tests of episodic memory and executive function, respectively.
Two cohorts of female Hooded-Lister rats were used in these experiments.
Animals were housed in social isolation or in groups of five from weaning,
post-natal day 28. The first cohort was tested in the NOR test with
inter-trial intervals (ITIs) of 1 min up to 6 h. The second cohort was
trained and tested in the attentional set-shifting task. In the NOR test,
isolates were only able to discriminate between the novel and familiar
objects up to 1-h ITI, whereas socially reared animals remembered the
familiar object up to a 4-h ITI. In the attentional set-shifting task,
isolates were significantly and selectively impaired in the
extra-dimensional shift phase of the task (P < 0.01). Rats reared in
isolation show impaired episodic memory in the NOR task and reduced
ability to shift attention between stimulus dimensions in the attentional
set-shifting task. Because schizophrenic patients show similar deficits in
performance in these cognitive domains, these data further support
isolation rearing as a putative preclinical model of the cognitive deficits
associated with schizophrenia
- …
