25 research outputs found

    Increased renal sodium absorption by inhibition of prostaglandin synthesis during fasting in healthy man. A possible role of the epithelial sodium channels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment with prostaglandin inhibitors can reduce renal function and impair renal water and sodium excretion. We tested the hypotheses that a reduction in prostaglandin synthesis by ibuprofen treatment during fasting decreased renal water and sodium excretion by increased absorption of water and sodium via the aquaporin2 water channels and the epithelial sodium channels.</p> <p>Methods</p> <p>The effect of ibuprofen, 600 mg thrice daily, was measured during fasting in a randomized, placebo-controlled, double-blinded crossover study of 17 healthy humans. The subjects received a standardized diet on day 1, fasted at day 2, and received an IV infusion of 3% NaCl on day 3. The effect variables were urinary excretions of aquaporin2 (u-AQP2), the beta-fraction of the epithelial sodium channel (u-ENaCbeta), cyclic-AMP (u-cAMP), prostaglandin E2 (u-PGE2). Free water clearance (CH2O), fractional excretion of sodium (FENa), and plasma concentrations of vasopressin, angiotensin II, aldosterone, atrial-, and brain natriuretic peptide.</p> <p>Results</p> <p>Ibuprofen decreased u-AQP2, u-PGE2, and FENa at all parts of the study. During the same time, ibuprofen significantly increased u-ENaCbeta. Ibuprofen did not change the response in p-AVP, u-c-AMP, urinary output, and free water clearance during any of these periods. Atrial-and brain natriuretic peptide were higher.</p> <p>Conclusion</p> <p>During inhibition of prostaglandin synthesis, urinary sodium excretion decreased in parallel with an increase in sodium absorption and increase in u-ENaCbeta. U-AQP2 decreased indicating that water transport via AQP2 fell. The vasopressin-c-AMP-axis did not mediate this effect, but it may be a consequence of the changes in the natriuretic peptide system and/or the angiotensin-aldosterone system</p> <p>Trial Registration</p> <p>Clinical Trials Identifier: NCT00281762</p

    Estimating motor unit numbers from a CMAP scan: repeatability study on three muscles at 15 centres

    No full text
    © 2023 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.Objective: To assess the repeatability and suitability for multicentre studies of MScanFit motor unit number estimation (MUNE), which involves modelling compound muscle action potential (CMAP) scans. Methods: Fifteen groups in 9 countries recorded CMAP scans twice, 1-2 weeks apart in healthy subjects from abductor pollicis brevis (APB), abductor digiti minimi (ADM) and tibialis anterior (TA) muscles. The original MScanFit program (MScanFit-1) was compared with a revised version (MScanFit-2), designed to accommodate different muscles and recording conditions by setting the minimal motor unit size as a function of maximum CMAP. Results: Complete sets of 6 recordings were obtained from 148 subjects. CMAP amplitudes differed significantly between centres for all muscles, and the same was true for MScanFit-1 MUNE. With MScanFit-2, MUNE differed less between centres but remained significantly different for APB. Coefficients of variation between repeats were 18.0% for ADM, 16.8% for APB, and 12.1% for TA. Conclusions: It is recommended for multicentre studies to use MScanFit-2 for analysis. TA provided the least variable MUNE values between subjects and the most repeatable within subjects. Significance: MScanFit was primarily devised to model the discontinuities in CMAP scans in patients and is less suitable for healthy subjects with smooth scans.This study was financially supported by the Lundbeck Foundation, Aage & Johanne Louis-Hansen Foundation, Dagmar Marshall's Foundation, Grosserer L. F. Foghts Foundation and The Jascha Foundation and FONDECYT N° 1201225info:eu-repo/semantics/publishedVersio
    corecore