2,309 research outputs found

    Multiple spacecraft observations of interplanetary shocks: Characteristics of the upstream ULF turbulence

    Get PDF
    All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. An overdetermined set of equations were inverted to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals the Mach number and angle were between the interplanetary magnetic field and the shock normal for each shock. The upstream waves were separated into two classes: whistler mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum

    Quality control in public participation assessments of water quality: the OPAL Water Survey

    Get PDF
    BACKGROUND: Public participation in scientific data collection is a rapidly expanding field. In water quality surveys, the involvement of the public, usually as trained volunteers, generally includes the identification of aquatic invertebrates to a broad taxonomic level. However, quality assurance is often not addressed and remains a key concern for the acceptance of publicly-generated water quality data. The Open Air Laboratories (OPAL) Water Survey, launched in May 2010, aimed to encourage interest and participation in water science by developing a 'low-barrier-to-entry' water quality survey. During 2010, over 3000 participant-selected lakes and ponds were surveyed making this the largest public participation lake and pond survey undertaken to date in the UK. But the OPAL approach of using untrained volunteers and largely anonymous data submission exacerbates quality control concerns. A number of approaches were used in order to address data quality issues including: sensitivity analysis to determine differences due to operator, sampling effort and duration; direct comparisons of identification between participants and experienced scientists; the use of a self-assessment identification quiz; the use of multiple participant surveys to assess data variability at single sites over short periods of time; comparison of survey techniques with other measurement variables and with other metrics generally considered more accurate. These quality control approaches were then used to screen the OPAL Water Survey data to generate a more robust dataset. RESULTS: The OPAL Water Survey results provide a regional and national assessment of water quality as well as a first national picture of water clarity (as suspended solids concentrations). Less than 10 % of lakes and ponds surveyed were ‘poor’ quality while 26.8 % were in the highest water quality band. CONCLUSIONS: It is likely that there will always be a question mark over untrained volunteer generated data simply because quality assurance is uncertain, regardless of any post hoc data analyses. Quality control at all stages, from survey design, identification tests, data submission and interpretation can all increase confidence such that useful data can be generated by public participants

    Magnetic Reconnection and Intermittent Turbulence in the Solar Wind

    Get PDF
    A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, B\mathbf{B}, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in B\mathbf{B}, we find 87%-92% of reconnection exhausts and \sim9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    A New 626 s Periodic X-ray Source in the Direction of the Galactic Center

    Full text link
    Here we report the detection of a 626 s periodic modulation from the X-ray source 2XMM J174016.0-290337 located in the direction of the Galactic center. We present temporal and spectral analyses of archival XMM-Newton data and photometry of archived near-infrared data in order to investigate the nature of this source. We find that the X-ray light curve shows a strong modulation at 626 +/- 2 s with a confidence level > 99.9% and a pulsed fraction of 54%. Spectral fitting demonstrates that the spectrum is consistent with an absorbed power law. No significant spectral variability was observed over the 626 s period. We have investigated the possibility that the 626 s period is orbital in nature (either that of an ultra-compact X-ray binary or an AM CVn) or related to the spin of a compact object (either an accretion powered pulsar or an intermediate polar). The X-ray properties of the source and the photometry of the candidate near-infrared counterparts are consistent with an accreting neutron star X-ray binary on the near-side of the Galactic bulge, where the 626 s period is most likely indicative of the pulsar spin period. However, we cannot rule out an ultra-compact X-ray binary or an intermediate polar with the data at hand. In the former case, if the 626 s modulation is the orbital period of an X-ray binary, it would be the shortest period system known. In the latter case, the modulation would be the spin period of a magnetic white dwarf. However, we find no evidence for absorption dips over the 626 s period, a low temperature black body spectral component, or Fe Kalpha emission lines. These features are commonly observed in intermediate polars, making 2XMM J174016.0-290337 a rather unusual member of this class if confirmed. We instead suggest that 2XMM J174016.0-290337 could be a new addition to the emerging class of symbiotic X-ray binaries.Comment: 11 pages, 10 figures, submitted to A&A on 18th January 2010, accepted for publication 20th August 201

    Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations

    Get PDF
    The most stringent test of theoretical models of the first-order Fermi mechanism at collisionless astrophysical shocks is a comparison of the theoretical predictions with observational data on particle populations. Such comparisons have yielded good agreement between observations at the quasi-parallel portion of the Earth's bow shock and three theoretical approaches, including Monte Carlo kinetic simulations. This paper extends such model testing to the realm of oblique interplanetary shocks: here observations of proton and alpha particle distributions made by the SWICS ion mass spectrometer on Ulysses at nearby interplanetary shocks are compared with test particle Monte Carlo simulation predictions of accelerated populations. The plasma parameters used in the simulation are obtained from measurements of solar wind particles and the magnetic field upstream of individual shocks. Good agreement between downstream spectral measurements and the simulation predictions are obtained for two shocks by allowing the the ratio of the mean-free scattering length to the ionic gyroradius, to vary in an optimization of the fit to the data. Generally small values of this ratio are obtained, corresponding to the case of strong scattering. The acceleration process appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical Journal, February 20, 199

    Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves

    Get PDF
    Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate
    corecore