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ABSTRACT: Since the Mid-Pleistocene Revolution, which occurred about one million years 

ago, global temperatures have fluctuated with a quasi-periodicity of ~100 thousand years 

(kyr). The pattern of past change in the extent of woodlands, and therefore by inference 

vegetation carbon storage, has been demonstrated to have a strong positive link with this 

global temperature change at high and mid latitudes. However, understanding of climate 

systems and ecosystem function indicates that the pattern of woodland change at low latitudes 

may follow a fundamentally different pattern. We present output from the intermediate 

complexity model GENIE-1, comprising a single transient simulation over the last 800 kyr 

and a 174-member ensemble of 130 kyr transient simulations over the last glacial cycle. 

These simulations suggest that whilst vegetation carbon storage in mid-high northern latitudes 

robustly follows the characteristic ~100 kyr cycle, this signal is not a robust feature of tropical 

vegetation which is subject to stronger direct forcing by the precessional (21 kyr) orbital cycle 

(albeit with a highly uncertain response). We conclude that the correlation of 

palaeoenvironmental records from low latitudes with global temperature change must be done 

with caution.  
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Orbital forcing and vegetation 

The record of the waxing and waning of ice sheets as determined by oxygen isotope records 

has long been regarded as the framework for past global climate change (Emilliani, 1955; 

Martinson et al., 1987; Lisiecki & Raymo, 2005). Temperature change determined from these 

records is widely accepted as the major driver of past environmental change (Siddall et al., 

2010) and underpins efforts to understand the likely effects of ongoing global climate change, 

e.g. IPCC 2007.  

 

On geological time scales, variations in the orbital configuration of the Earth have been 

generally accepted as a major driver of global climate change following Milankovitch (1948). 

Through the Quaternary record (the last ~2.6 million years), orbital cycles can be broken 

down into three major components that vary with different characteristic periodicities: 

eccentricity (~400 and ~100 thousand years [kyr]), obliquity (~41 kyr) and precession (~21 

kyr) (Berger and Loutre, 1991). Although a complete explanation for glacial cycles, generally 

accepted to be the result of a complex interplay between these orbital cycles, remains elusive 

(Crucifix and Rougier, 2009), global change has exhibited a quasi-periodicity of ~100 kyr 

throughout the last one million years (Shackleton, 2000, Lisiecki and Raymo, 2005) with, 

considering more regional scales, an increasing influence of precession closer to the equator 

(Clement et al., 2004; Berger et al., 2006). The precessional cycle is also important for 

tropical climate because it controls the position of the Inter-Tropical Convergence Zone 

(ITCZ), which modulates the pattern of rainfall (Clement et al., 2004). In turn, the ITCZ 

position also impacts other important low latitude climate phenomena, e.g.  Monsoons 

(Braconnot et al., 2008) and El Niño Southern Oscillation (ENSO) (Clement, 1999; Koutavas 

et al., 2006). 

 

The link between woodland extent and warmer global climates has been established through 

comparison of fossil pollen records from mid-latitudes with the δ
18

O SPECMAP stack 

(Tzedakis et al., 1997). Comparison with the SPECMAP stack has become a standard tool to 

provide chronologies for tropical paleoecological data where radiocarbon dating cannot be 

used or needs to be supplemented, e.g. Sabana de Bogata, Colombia (Hooghiemstra, 1984), 

Gulf of Guinea (Frédoux, 1994) or Lynch’s crater, Australia (Kershaw et al., 2007). From 

these extended chronologies, a general relationship of maximum woodland extent and warm 

intervals has been observed in the montane tropics. Data from the lowlands are far more 
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ambiguous, with increasing evidence of forest cover being retained during glacial episodes 

(Bush et al., 2011), though probably being lushest, i.e. most carbon stored in plant matter, 

during warm, wet events. 

 

The ~100 kyr cycle of climate and vegetation change through the Quaternary at high latitudes 

is well established (Shackleton, 1969; Tzedakis et al., 1997). However, recent low-latitude 

palaeoenvironmental records, not dated through pollen correlation, have suggested that the 

pattern of vegetation change does not conform to that seen at high latitude (Scholz et al., 

2007; Bush et al., 2010; Gosling et al., 2009). These low latitude palaeoenvironmental 

records suggest that the precessional and eccentricity cycles are both of major importance for 

vegetation at low latitudes and the combination of the two cycles determines the large scale 

pattern of the vegetation response. Independent observations of Quaternary mega-droughts in 

tropical African lakes (Scholz et al., 2007) and South American vegetation change (Bush et 

al., 2009) have been linked to variation in precessional forcing. Bush et al. (2009) suggest 

that an increase in intensification of the dry season would likely have the greatest influence 

upon vegetation. Modelling studies have also implicated a likely role for the precessional 

forcing of vegetation (Claussen et al. 2006), with particular importance in the tropics 

(Tjallingi et al. 2008). Improving understanding of the pattern of vegetation response to 

global climate change across the latitudes has major implications for understanding: i) past 

patterns of carbon storage, and ii) ecosystems response to predicted future climate change 

(e.g. Malhi et al. 2008).  

 

GENIE-1 simulations of terrestrial carbon storage 

We have performed a transient simulation of global climate over the last 800 kyr with the 

intermediate complexity model GENIE-1 (Lenton et al., 2006), which incorporates a simple 

model of vegetation and soil carbon storage (Williamson et al., 2006). Aspects of this 

simulation, including details of the model set-up and transient boundary conditions 

(prescribed ice sheets, CO2 and orbital forcing), has been detailed previously in Holden et al. 

(2010a). The simulated temporal variation in soil and vegetative carbon for the global average 

(Fig. 1a) and five latitudinal bands (defined by grid cell boundaries at ~23º and ~51º in both 

hemispheres) (Fig. 1b-f) are plotted. The projected carbon storage within each latitude band 

reflects both land area (greatest at high and mid northern latitudes) and carbon density. 

Vegetation carbon density is generally highest in the tropics, due to increased productivity, 
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whilst soil carbon density is generally highest at high-latitudes, due to decreased respiration 

rates. In this simulation, preindustrial global storage of 537 Gt (gigatonnes; x10
9
 tons) of 

vegetative carbon and 1,840 GT of soil carbon compares to a (highly uncertain) range of 

model and data estimates of, respectively, 450 to 650 Gt and 850 to 2,400 Gt (Bondeau et al, 

2007, and references therein). The modelled distributions of preindustrial carbon storage are 

also reasonable, despite the simple atmospheric model (the dynamics of atmospheric transport 

in GENIE-1 are crudely represented by diffusive processes). Compared to observations, the 

over-diffusive atmosphere leads to less distinct deserts whilst boreal forest is too sparse, 

especially in Eurasia, due to difficulties in transporting moisture to the continental interiors 

(Lenton et al 2006). However, the patterns of change of carbon storage over time are less 

easily explained. 

 

Fig. 1 illustrates that the modelled glacial-interglacial variability of terrestrial carbon is highly 

latitudinally dependent, suggesting that the processes controlling tropical vegetation are quite 

distinct from those at mid-high northern latitudes. Variability of carbon storage in high 

northern latitudes (Fig. 1b) is driven primarily by changes in vegetated area in response to the 

extent of the ice mass. The northern extent of the mid-northern latitude band is set at 51
o
N 

which is coincident with the southern extent of the Laurentide ice sheet. Consequently, this 

band is not directly influenced by loss of vegetation area due to ice sheet coverage. Simulated 

changes in both vegetative and soil carbon storage in the mid-northern latitude band are 

dominated by temperature, exhibiting a high positive correlation with annual-average 

temperature (R = 0.94 and 0.72 respectively) and displaying the ~100 kyr quasi-periodicity 

apparent in δ
18

O records (Fig. 1c). In the GENIE-1 simulation, moisture availability, 

especially during glacial periods, is not a limiting factor for vegetation growth at mid 

latitudes. 

 

At low latitudes, however, the pattern of carbon storage through time is quite different when 

compared with high- and mid-northern latitudes. At low southern latitudes in particular, (Fig. 

1e) there are two fundamentally different relationships: i) vegetative carbon is only weakly 

(and negatively) correlated with annual average temperature (R = -0.24), and ii) soil carbon 

exhibits a very strong (again negative) correlation with annual average temperature (R = 

-0.98); where the increased soil carbon during cold periods presumably reflects decreased 

respiration rates. Increased soil carbon during glacial times facilitates increased storage of soil 

moisture, favouring the growth of vegetative carbon and likely contributing to the modelled 
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increase of low-latitude vegetation during cold periods. However, in this GENIE-1 

parameterisation, the largest changes in tropical vegetation are driven by the precessional 

cycle, with carbon storage in southern tropical vegetation inversely correlated (R = -0.69) 

with the peak to peak difference in local temperature across the seasonal cycle.  

 

Although this simulation suggests that vegetative changes are likely driven by quite different 

processes at different latitudes, we cannot assume the detail of the modelled changes in this 

single parameterisation is a robust result. The parameters driving vegetative changes are very 

uncertain so that the delicate balance between numerous competing effects cannot be assumed 

to be correct, especially under very different climate states. Complex vegetation models 

coupled to high resolution GCMs exhibit considerable uncertainty even when forced by the 

well-understood modern state (Friedlingstein et al., 2006). In order to address the modelled 

robustness to uncertain vegetation parameters, we performed a 174 member ensemble of 

simulations over the last glacial cycle (130 ka ago to present). The parameterisations are a 

subset of the 480 member ‘Last Glacial Maximum plausibility-constrained’ (LPC) parameter 

set (Holden et al., 2010b) which all exhibit plausible preindustrial and Last Glacial Maximum 

(LGM) climates and vegetation states, filtered (here to assist tractability) by the constraint that 

they exhibit a collapse of Atlantic Meridional Overturning during glacial terminations 

(Holden et al., 2010a). Ensemble-averaged preindustrial terrestrial carbon storage is 440±70 

Gt (vegetation) and 1,250±170 Gt (soil carbon). Uncertainties are represented throughout by 

the ensemble standard deviations (1σ). 

 

In order to evaluate the robustness of the temporal variability displayed in Fig.1, we consider 

the ensemble-averaged correlation with respect to the single 800 kyr simulation. The Net 

Primary Productivity (NPP) in the mid-northern latitude band (Fig 2a) exhibits an ensemble 

averaged correlation of R=0.92 ±0.10 with the 800 kyr simulation, indicating that the 

response plotted in Fig 1c is a highly robust result of GENIE-1. However, the ensemble-

averaged correlation of low southern latitude NPP (Fig 2b) is R=0.34 ±0.24, and includes 16 

ensemble members which are (albeit weakly) negatively correlated with the single simulation, 

suggesting that tropical vegetation responds to a range of (highly uncertain) competing 

processes. Notably, and unsurprisingly, the nature of the response of tropical vegetation to 

glacial cycles is sensitive to the parameterisation of CO2 fertilization - the sensitivity of 

vegetation to uncertain CO2 fertilization is well known (e.g. Lapola et al, 2008). Sixty-two 

ensemble members have a CO2 fertilization parameter (Williamson et al, 2006) k14 > 432 
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ppm (which equates to an increase of >50% in the photosynthesis rate in response to a 

doubling of preindustrial CO2). In these 62 simulations southern tropical vegetation exhibits 

an average correlation of R=0.80 ±0.28 with atmospheric CO2 concentration (compared to 

R=0.46 ±0.61 in the 112 remaining simulations). However, 16 ensemble members are 

strongly negatively correlated (R < -0.5) with atmospheric CO2, suggesting that the indirect 

(temperature) effect of CO2 also plays a significant role in determining tropical vegetation (all 

of the simulations assume a positive fertilization effect). The disentanglement of the roles 

played by temperature, CO2 fertilization and seasonality in the determination of tropical NPP 

is not straightforward, and likely not a useful exercise here in view of the neglect of important 

atmospheric circulation dynamics in GENIE-1. Furthermore, as we force the model with 

prescribed CO2 and ice sheets, we cannot separate the direct role of orbital variability on 

vegetation from the indirect role, via its governing influence on these forcing mechanisms 

(which are, in reality, not forcing mechanisms but earth system feedbacks in their own right). 

Our ensemble analysis does, however, highlight the substantial uncertainties which exist even 

in this simple model, and furthermore suggests the possibility that glacial-interglacial changes 

in tropical vegetation may provide a useful constraint on CO2 fertilization. 

 

Discussion 

For these purposes, the notable weakness of GENIE-1 is the absence of a fully dynamic 

atmosphere.  Orbitally-driven variability in monsoon systems is potentially key to variability 

in the tropics (Braconnot et al., 2008), but GENIE-1 can only crudely model such changes 

through diffusive transport. However, cognizant of this constraint, the broad pattern of large 

scale changes in the temporal variability of carbon storage simulated in GENIE-1, reflecting 

the decreasing influence of ice sheets and the increased direct influence of precessional 

forcing at tropical latitudes, is likely to be robust. An improved understanding will require the 

application of transient 3D dynamical atmosphere modelling together with an investigation of 

the uncertainty in the modelling of vegetation itself (as has been addressed here). Such an 

evaluation of the coupled climate-vegetation uncertainty is very challenging given the current 

constraints on computing power, although models with a reduced complexity dynamical 

atmosphere such as CLIMBER-2 (Petoukhov et al., 2000) or GENIE-2 (Lenton et al., 2007) 

are sufficiently efficient to facilitate such an analysis.  
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The GENIE-1 simulations presented here thus support the inferences from fossil pollen 

records that precession is a relatively more important driver of vegetation change at low 

latitudes than at high and mid latitudes (Bush et al., 2009; Gosling et al., 2009). The 

increasing influence of a precessional signal away from the northern ice sheets indicates that 

the correlation of low latitude pollen records with global climate should be performed with 

extreme caution; and strongly suggests that wherever possible independent radiometric dating 

should be sought. However, the pattern of vegetation carbon change shown in the model 

supports the use of correlation of vegetation records to temperature (SPECMAP) at mid and 

high latitudes (following Tzedakis et al., 1997). The challenge now is to develop robust 

ecological and palaeoecological datasets that test the precessional model for vegetation 

change at low latitudes, particularly in lowland regions. 
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Figure caption2 

 

 

Figure 1. Modelled variation in global terrestrial carbon storage and climate over the last 800 

ka for five latitudinal bands: (a) global average; (b) high northern latitudes; (c) mid northern 

latitudes; d) low northern latitudes; (e) low southern latitudes; (f) mid southern latitudes. The 

latitude bands are defined by grid cell boundaries at ~23
o
 and ~51

o
 in both hemispheres. 

Annual average temperatures, vegetative carbon, soil carbon and peak-to-peak differences in 

temperature across the seasonal cycle are shown in the 1
st
, 2

nd
, 3

rd
 and 4

th
 traces (top to 

bottom) in each panel, respectively (red, green, brown and blue, respectively when viewed in 

colour online at wileyonlinelibrary.com). Note the seasonality axis is reversed. Temperatures 

are expressed as sea-level equivalent surface air temperatures, averaged over land. 

 

Figure 2. 174-member GENIE-1 ensemble of simulations over the last 130 kyr. Net Primary 

Productivity (NPP) expressed relative to preindustrial, spatially averaged over a) mid northern 

latitudes (~23ºN to 51ºN) and b) low southern latitudes (~0ºS to 23ºS).  
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Figure 1 
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Figure 1 (continued) 
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Figure 2 

 


