2,215 research outputs found
Bifurcations of two coupled classical spin oscillators
Two classical, damped and driven spin oscillators with an isotropic exchange
interaction are considered. They represent a nontrivial physical system whose
equations of motion are shown to allow for an analytic treatment of local
codimension 1 and 2 bifurcations. In addition, numerical results are presented
which exhibit a Feigenbaum route to chaos.Comment: 16 pages, .dvi and postscrip
Limits to Sympathetic Evaporative Cooling of a Two-Component Fermi Gas
We find a limit cycle in a quasi-equilibrium model of evaporative cooling of
a two-component fermion gas. The existence of such a limit cycle represents an
obstruction to reaching the quantum ground state evaporatively. We show that
evaporatively the \beta\mu ~ 1. We speculate that one may be able to cool an
atomic fermi gas further by photoassociating dimers near the bottom of the
fermi sea.Comment: Submitted to Phys. Rev
J/psi Production at the LHC
We firstly examine hadroproduction of prompt J/psi's at the Fermilab Tevatron
in a Monte Carlo Framework by means of the event generator PYTHIA 5.7 in which
those colour-octet matrix elements processes relevant for charmonium production
have been implemented accordingly. We find that colour-octet matrix elements
presented in literature from p-pbar collider data are systematically
overestimated due to overlooking of the effective primordial transverse
momentum of partons (i.e. including higher-order QCD effects). We estimate the
size of these effects using different parton distribution functions. Finally,
after normalization to Tevatron data, we extrapolate up to LHC energies making
a prediction on the expected pt differential cross-section for charmonium.Comment: 4 pages, LaTex, 3 Figures included in the text, Contribution to the
2nd Int. Conference on Hyperons, charm and beauty hadrons (Montreal, Aug
27-30, 1996
Evaporative Cooling of a Two-Component Degenerate Fermi Gas
We derive a quantum theory of evaporative cooling for a degenerate Fermi gas
with two constituents and show that the optimum cooling trajectory is
influenced significantly by the quantum statistics of the particles. The
cooling efficiency is reduced at low temperatures due to Pauli blocking of
available final states in each binary collision event. We compare the
theoretical optimum trajectory with experimental data on cooling a quantum
degenerate cloud of potassium-40, and show that temperatures as low as 0.3
times the Fermi temperature can now be achieved.Comment: 6 pages, 4 figure
On the contribution of the horizontal sea-bed displacements into the tsunami generation process
The main reason for the generation of tsunamis is the deformation of the
bottom of the ocean caused by an underwater earthquake. Usually, only the
vertical bottom motion is taken into account while the horizontal co-seismic
displacements are neglected in the absence of landslides. In the present study
we propose a methodology based on the well-known Okada solution to reconstruct
in more details all components of the bottom coseismic displacements. Then, the
sea-bed motion is coupled with a three-dimensional weakly nonlinear water wave
solver which allows us to simulate a tsunami wave generation. We pay special
attention to the evolution of kinetic and potential energies of the resulting
wave while the contribution of the horizontal displacements into wave energy
balance is also quantified. Such contribution of horizontal displacements to
the tsunami generation has not been discussed before, and it is different from
the existing approaches. The methods proposed in this study are illustrated on
the July 17, 2006 Java tsunami and some more recent events.Comment: 30 pages; 14 figures. Accepted to Ocean Modelling. Other authors
papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh
Evaporative cooling of trapped fermionic atoms
We propose an efficient mechanism for the evaporative cooling of trapped
fermions directly into quantum degeneracy. Our idea is based on an electric
field induced elastic interaction between trapped atoms in spin symmetric
states. We discuss some novel general features of fermionic evaporative cooling
and present numerical studies demonstrating the feasibility for the cooling of
alkali metal fermionic species Li, K, and Rb. We also
discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including
the effects of anisotropic interactions.Comment: to be publishe
A Poincare-Covariant Parton Cascade Model for Ultrarelativistic Heavy-Ion Reactions
We present a new cascade-type microscopic simulation of nucleus-nucleus
collisions at RHIC energies. The basic elements are partons (quarks and gluons)
moving in 8N-dimensional phase space according to Poincare-covariant dynamics.
The parton-parton scattering cross sections used in the model are computed
within perturbative QCD in the tree-level approximation. The Q^2 dependence of
the structure functions is included by an implementation of the DGLAP mechanism
suitable for a cascade, so that the number of partons is not static, but varies
in space and time as the collision of two nuclei evolves. The resulting parton
distributions are presented, and meaningful comparisons with experimental data
are discussed.Comment: 30 pages. 11 figures. Submitted to Phys.Rev.
Scattering of short laser pulses from trapped fermions
We investigate the scattering of intense short laser pulses off trapped cold
fermionic atoms. We discuss the sensitivity of the scattered light to the
quantum statistics of the atoms. The temperature dependence of the scattered
light spectrum is calculated. Comparisons are made with a system of classical
atoms who obey Maxwell-Boltzmann statistics. We find the total scattering
increases as the fermions become cooler but eventually tails off at very low
temperatures (far below the Fermi temperature). At these low temperatures the
fermionic degeneracy plays an important role in the scattering as it inhibits
spontaneous emission into occupied energy levels below the Fermi surface. We
demonstrate temperature dependent qualitative changes in the differential and
total spectrum can be utilized to probe quantum degeneracy of trapped Fermi gas
when the total number of atoms are sufficiently large . At smaller
number of atoms, incoherent scattering dominates and it displays weak
temperature dependence.Comment: updated figures and revised content, submitted to Phys.Rev.
Arp2/3 complex inhibition radically alters lamellipodial actin architecture, suspended cell shape, and the cell spreading process
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 26 (2015): 887-900, doi:10.1091/mbc.E14-07-1244.Recent studies have investigated the dendritic actin cytoskeleton of the cell edge's lamellipodial (LP) region by experimentally decreasing the activity of the actin filament nucleator and branch former, the Arp2/3 complex. Here we extend these studies via pharmacological inhibition of the Arp2/3 complex in sea urchin coelomocytes, cells that possess an unusually broad LP region and display correspondingly exaggerated centripetal flow. Using light and electron microscopy, we demonstrate that Arp2/3 complex inhibition via the drug CK666 dramatically altered LP actin architecture, slowed centripetal flow, drove a lamellipodial-to-filopodial shape change in suspended cells, and induced a novel actin structural organization during cell spreading. A general feature of the CK666 phenotype in coelomocytes was transverse actin arcs, and arc generation was arrested by a formin inhibitor. We also demonstrate that CK666 treatment produces actin arcs in other cells with broad LP regions, namely fish keratocytes and Drosophila S2 cells. We hypothesize that the actin arcs made visible by Arp2/3 complex inhibition in coelomocytes may represent an exaggerated manifestation of the elongate mother filaments that could possibly serve as the scaffold for the production of the dendritic actin network.This research was supported by National Science Foundation STEP grant 0856704 to Dickinson College, student/faculty summer research grants from the Dickinson College Research and Development Committee, Laura and Arthur Colwin Summer Research Fellowships from the Marine Biological Laboratory to J.H.H. and C.B.S., National Institutes of Health Grant EB002583 to R.O., and National Science Foundation collaborative research grants to J.H.H. (MCB-1412688) and C.B.S. (MCB-1412734)
Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and collisions
This manuscript is the outcome of the subgroup ``PDFs, shadowing and
collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at
the LHC''. In addition to the experimental parameters for collisions at
the LHC, the issues discussed are factorization in nuclear collisions, nuclear
parton distributions (nPDFs), hard probes as the benchmark tests of
factorization in collisions at the LHC, and semi-hard probes as
observables with potentially large nuclear effects. Also, novel QCD phenomena
in collisions at the LHC are considered. The importance of the
program at the LHC is emphasized.Comment: The writeup of the working group "PDFs, shadowing and
collisions" for the CERN Yellow Report on Hard Probes in Heavy Ion Collisions
at the LHC, 121 pages. Subgroup convenors: K.J. Eskola, J.w. Qiu (theory) and
W. Geist (experiment). Editor: K.J. Eskol
- …
