114 research outputs found

    Chitosan polysaccharide suppress toll like receptor dependent immune response [Çitosan polisakkaridi toll benzeri reseptöre bağlı bağışıklık yanıtını baskılar]

    Get PDF
    Objectives: Chitosan is a widely used vaccine or anti-cancer delivery vehicle. In this study, we investigated the immunomodulatory effect of chitosan/pIC nanocomplexes on mouse immune cells. Materials and methods: Proliferative and cytotoxic features of chitosan were tested via CCK-8 assay on RAW 264. 7. IL-1β production was assessed via ELISA from PEC supernatants. TNF-α, and NO induction from chitosan treated RAW cells detected by ELISA and Griess assay, respectively. mRNA message levels of TLRs and cytokines on macrophages in response to chitosan/pIC nanocomplex treatments were evaluated by RT-PCR. Results: Results revealed that chitosan is non-toxic to cells, however, proliferative capacities of macrophages were reduced by chitosan administration. Mouse PECs treated with chitosan, led to NLRP3 dependent inflammasome activation as evidenced by dose-dependent IL-1β secretion. Chitosan/pIC nanocomplexes did not improve immunostimulatory action of pIC on RAW cells, since TNF-α and NO productions remained unaltered. Expression levels of several TLRs, CXCL-16 and IFN-α messages from mouse splenocytes were down regulated in response to chitosan/pIC nanocomplex treatment. Conclusion: Our results revealed that chitosan is an anti-proliferative and inflammasome triggering macromolecule on immune cells. Utilization of chitosan as a carrier system is of concern for immunotherapeutic applications. © 2015 Turkish Journal of Immunology

    Involvement of sting-activating cyclic Di-nucleotides on T-cell differentiation and function: An unresolved issue [Sting’i etkinleştiren siklik dinükleotidlerin T hücre diferansiyasyonu ve fonksiyonuna olan etkisi: Çözülmemiş bir sorun]

    Get PDF
    STING is the pivotal mediator for the recognition of host and pathogenic cytosolic dsDNA as well as cyclic di-nucleotide metabolites from microbes. Studies demonstrated that DNA released from cancerous cells are internalized by innate immune cells such as macrophages and dendritic cells in tumor microenvironment and trigger the production of interferon beta and other pro-inflammatory cytokines including interleukin 6, tumor necrosis factor alpha, and interleukin 12 through STING triggered signaling pathway. Later, these cytokines increase the cytotoxic activity of CD8+ T-cells by increasing the production of interferon gamma. This review discusses the importance of the involvement of STING during the establishment of immunity against intracellular pathogens and its direct effect on T-cells. © 2016 Turkish Journal of Immunology. All rights reserved

    Astrophysics from data analysis of spherical gravitational wave detectors

    Full text link
    The direct detection of gravitational waves will provide valuable astrophysical information about many celestial objects. Also, it will be an important test to general relativity and other theories of gravitation. The gravitational wave detector SCHENBERG has recently undergone its first test run. It is expected to have its first scientific run soon. In this work the data analysis system of this spherical, resonant mass detector is tested through the simulation of the detection of gravitational waves generated during the inspiralling phase of a binary system. It is shown from the simulated data that it is not necessary to have all six transducers operational in order to determine the source's direction and the wave's amplitudes.Comment: 8 pages and 3 figure

    Toward an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence

    Full text link
    Observations of an optical source coincident with gravitational wave emission detected from a binary neutron star coalescence will improve the confidence of detection, provide host galaxy localisation, and test models for the progenitors of short gamma ray bursts. We employ optical observations of three short gamma ray bursts, 050724, 050709, 051221, to estimate the detection rate of a coordinated optical and gravitational wave search of neutron star mergers. Model R-band optical afterglow light curves of these bursts that include a jet-break are extrapolated for these sources at the sensitivity horizon of an Advanced LIGO/Virgo network. Using optical sensitivity limits of three telescopes, namely TAROT (m=18), Zadko (m=21) and an (8-10) meter class telescope (m=26), we approximate detection rates and cadence times for imaging. We find a median coincident detection rate of 4 yr^{-1} for the three bursts. GRB 050724 like bursts, with wide opening jet angles, offer the most optimistic rate of 13 coincident detections yr^{-1}, and would be detectable by Zadko up to five days after the trigger. Late time imaging to m=26 could detect off-axis afterglows for GRB 051221 like bursts several months after the trigger. For a broad distribution of beaming angles, the optimal strategy for identifying the optical emissions triggered by gravitational wave detectors is rapid response searches with robotic telescopes followed by deeper imaging at later times if an afterglow is not detected within several days of the trigger.Comment: 6 pages, 1 figure, Accepted for publication in MNRAS Letters (2011 April 22

    Tidal Stabilization of Rigidly Rotating, Fully Relativistic Neutron Stars

    Get PDF
    It is shown analytically that an external tidal gravitational field increases the secular stability of a fully general relativistic, rigidly rotating neutron star that is near marginal stability, protecting it against gravitational collapse. This stabilization is shown to result from the simple fact that the energy δM(Q,R)\delta M(Q,R) required to raise a tide on such a star, divided by the square of the tide's quadrupole moment QQ, is a decreasing function of the star's radius RR, (d/dR)[δM(Q,R)/Q2]<0(d/dR)[\delta M(Q,R)/Q^2]<0 (where, as RR changes, the star's structure is changed in accord with the star's fundamental mode of radial oscillation). If (d/dR)[δM(Q,R)/Q2](d/dR)[\delta M(Q,R)/Q^2] were positive, the tidal coupling would destabilize the star. As an application, a rigidly rotating, marginally secularly stable neutron star in an inspiraling binary system will be protected against secular collapse, and against dynamical collapse, by tidal interaction with its companion. The ``local-asymptotic-rest-frame'' tools used in the analysis are somewhat unusual and may be powerful in other studies of neutron stars and black holes interacting with an external environment. As a byproduct of the analysis, in an appendix the influence of tidal interactions on mass-energy conservation is elucidated.Comment: Revtex, 10 pages, 2 figures; accepted for publication in Physical Review D. Revisions: Appendix rewritten to clarify how, in Newtonian gravitation theory, ambiguity in localization of energy makes interaction energy ambiguous but leaves work done on star by tidal gravity unambiguous. New footnote 1 and Refs. [11] and [19

    Detection in coincidence of gravitational wave bursts with a network of interferometric detectors (I): Geometric acceptance and timing

    Full text link
    Detecting gravitational wave bursts (characterised by short durations and poorly modelled waveforms) requires to have coincidences between several interferometric detectors in order to reject non-stationary noise events. As the wave amplitude seen in a detector depends on its location with respect to the source direction and as the signal to noise ratio of these bursts are expected to be low, coincidences between antennas may not be so likely. This paper investigates this question from a statistical point of view by using a simple model of a network of detectors; it also estimates the timing precision of a detection in an interferometer which is an important issue for the reconstruction of the source location, based on time delays.Comment: low resolution figure 1 due to file size problem

    Gravitational Waves from Mergin Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Waveform?

    Full text link
    The most promising source of gravitational waves for the planned detectors LIGO and VIRGO are merging compact binaries, i.e., neutron star/neutron star (NS/NS), neutron star/black hole (NS/BH), and black hole/black-hole (BH/BH) binaries. We investigate how accurately the distance to the source and the masses and spins of the two bodies will be measured from the gravitational wave signals by the three detector LIGO/VIRGO network using ``advanced detectors'' (those present a few years after initial operation). The combination M(M1M2)3/5(M1+M2)1/5{\cal M} \equiv (M_1 M_2)^{3/5}(M_1 +M_2)^{-1/5} of the masses of the two bodies is measurable with an accuracy 0.1%1%\approx 0.1\%-1\%. The reduced mass is measurable to 10%15%\sim 10\%-15\% for NS/NS and NS/BH binaries, and 50%\sim 50\% for BH/BH binaries (assuming 10M10M_\odot BH's). Measurements of the masses and spins are strongly correlated; there is a combination of μ\mu and the spin angular momenta that is measured to within 1%\sim 1\%. We also estimate that distance measurement accuracies will be 15%\le 15\% for 8%\sim 8\% of the detected signals, and 30%\le 30\% for 60%\sim 60\% of the signals, for the LIGO/VIRGO 3-detector network.Comment: 103 pages, 20 figures, submitted to Phys Rev D, uses revtex macros, Caltech preprint GRP-36

    Metrics for minimising environmental impacts while maximising circularity in biobased products: The case of lignin-based asphalt

    Get PDF
    Achieving a circular economy (CE) is seen by society and policymakers as crucial to achieving a sustainable, resource-efficient, renewable and competitive economy. Given the current threat of climate change, we must develop new products that not only maximise the circularity of resources but also minimise climate change impacts. While these two goals are usually aligned, trade-offs exist. For instance, recycling biobased asphalt is a better end-of-life option than landfilling from a resource efficiency perspective. However, landfilling of biogenic non-biodegradable material leads to permanent carbon storage and, therefore, climate benefits. To fully understand the potential benefits and impacts of biobased circular innovations, we need metrics to capture their complexity from both a circular and climate point of view. This study explores the use of different circularity and sustainability metrics to understand the impacts and trade-offs of lignin-based versus bitumen-based asphalts. The analysis is done by calculating the Material Circularity Index (MCI) and two newly developed indicators quantifying the biogenic carbon storage (BCS) of products (BCS100 and c-BCS) while following the CE principles. In addition, the impacts regarding climate change, life cycle costs and ECI (environmental costs indicator) are also provided. Based on the MCI, it can be concluded that lignin-based asphalt roads have slightly higher material circularity than their bitumen-based counterparts. The BCS analysis indicated that the least circular lignin-based alternative sequesters the highest amount of carbon in the long term due to permanent storage in foundations. Despite these trade-offs, the results from the newly developed BCS indicators allowed to align both climate and circularity goals, guiding policymakers and industry actors to implement circular biobased strategies where the value of biobased materials is optimised. Finally, this article discusses the use of different circularity and environmental metrics for decision making in the context of a circular biobased economy

    Measuring gravitational waves from binary black hole coalescences: II. the waves' information and its extraction, with and without templates

    Get PDF
    We discuss the extraction of information from detected binary black hole (BBH) coalescence gravitational waves, focusing on the merger phase that occurs after the gradual inspiral and before the ringdown. Our results are: (1) If numerical relativity simulations have not produced template merger waveforms before BBH detections by LIGO/VIRGO, one can band-pass filter the merger waves. For BBHs smaller than about 40 solar masses detected via their inspiral waves, the band pass filtering signal to noise ratio indicates that the merger waves should typically be just barely visible in the noise for initial and advanced LIGO interferometers. (2) We derive an optimized (maximum likelihood) method for extracting a best-fit merger waveform from the noisy detector output; one "perpendicularly projects" this output onto a function space (specified using wavelets) that incorporates our prior knowledge of the waveforms. An extension of the method allows one to extract the BBH's two independent waveforms from outputs of several interferometers. (3) If numerical relativists produce codes for generating merger templates but running the codes is too expensive to allow an extensive survey of the merger parameter space, then a coarse survey of this parameter space, to determine the ranges of the several key parameters and to explore several qualitative issues which we describe, would be useful for data analysis purposes. (4) A complete set of templates could be used to test the nonlinear dynamics of general relativity and to measure some of the binary parameters. We estimate the number of bits of information obtainable from the merger waves (about 10 to 60 for LIGO/VIRGO, up to 200 for LISA), estimate the information loss due to template numerical errors or sparseness in the template grid, and infer approximate requirements on template accuracy and spacing.Comment: 33 pages, Rextex 3.1 macros, no figures, submitted to Phys Rev
    corecore