1,030 research outputs found
Comet Machholz (C/2004 Q2): morphological structures in the inner coma and rotation parameters
Extensive observations of comet C/2004 Q2 (Machholz) were carried out between
August 2004 and May 2005. The images obtained were used to investigate the
comet's inner coma features at resolutions between 350 and 1500 km/pixel. A
photometric analysis of the dust outflowing from the comet's nucleus and the
study of the motion of the morphological structures in the inner coma indicated
that the rotation period of the nucleus was most likely around 0.74 days. A
thorough investigation of the inner coma morphology allowed us to observe two
main active sources on the comet's nucleus, at a latitude of +85{\deg} \pm
5{\deg} and +45{\deg} \pm 5{\deg}, respectively. Further sources have been
observed, but their activity ran out quite rapidly over time; the most relevant
was at latcom. = 25{\deg} \pm 5{\deg}. Graphic simulations of the geometrical
conditions of observation of the inner coma were compared with the images and
used to determine a pole orientation at RA=95{\deg} \pm 5{\deg}, Dec=+35{\deg}
\pm 5{\deg}. The comet's spin axis was lying nearly on the plane of the sky
during the first decade of December 2004.Comment: 29 pages, 8 figures, 3 table
The Claims Culture: A Taxonomy of Industry Attitudes
This paper presents an analysis of a familiar aspect of construction industry culture that we have dubbed 'the claims culture'. This is a culture of contract administration that lays a strong emphasis on the planning and management of claims. The principal elements of the analysis are two sets of distinctions. The first comprises economic and occupational orders, referring to two kinds of control that are exercised over the construction process; predicated respectively on economic ownership and occupational competence. The second refers to contrasting attitudes towards relationships and problem solving within these orders: respectively 'distributive' and 'integrative'. The concepts of economic and occupational order entail further sub-categories. The various attitudes associated with these categories and sub-categories are described. They are assessed as to their consequences for change initiatives in the industry
Microwave Assisted Synthesis of Py-Im Polyamides
Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5′-WGWWCW-3′ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps
Nuclear Sizes and the Isotope Shift
Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii
are discussed from the nuclear-physics perspective. Interpretation of precise
isotope-shift measurements is formalism dependent, and care must be exercised
in interpreting these results and those obtained from relativistic electron
scattering from nuclei. We strongly advocate that the entire nuclear-charge
operator be used in calculating nuclear-size corrections in atoms, rather than
relegating portions of it to the non-radiative recoil corrections. A
preliminary examination of the intrinsic deuteron radius obtained from
isotope-shift measurements suggests the presence of small meson-exchange
currents (exotic binding contributions of relativistic order) in the nuclear
charge operator, which contribute approximately 1/2%.Comment: 17 pages, latex, 1 figure -- Submitted to Phys. Rev. A -- epsfig.sty
require
The First 1 1/2 Years of TOTEM Roman Pot Operation at LHC
Since the LHC running season 2010, the TOTEM Roman Pots (RPs) are fully
operational and serve for collecting elastic and diffractive proton-proton
scattering data. Like for other moveable devices approaching the high intensity
LHC beams, a reliable and precise control of the RP position is critical to
machine protection. After a review of the RP movement control and position
interlock system, the crucial task of alignment will be discussed.Comment: 3 pages, 6 figures; 2nd International Particle Accelerator Conference
(IPAC 2011), San Sebastian, Spain; contribution MOPO01
Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression
Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements
Regulatory network decoded from epigenomes of surface ectoderm-derived cell types
Developmental history shapes the epigenome and biological function of differentiated cells. Epigenomic patterns have been broadly attributed to the three embryonic germ layers. Here we investigate how developmental origin influences epigenomes. We compare key epigenomes of cell types derived from surface ectoderm (SE), including keratinocytes and breast luminal and myoepithelial cells, against neural crest-derived melanocytes and mesoderm-derived dermal fibroblasts to identify SE differentially methylated regions (SE-DMRs). DNA methylomes of neonatal keratinocytes share many more DMRs with adult breast luminal and myoepithelial cells than with melanocytes and fibroblasts from the same neonatal skin. This suggests that SE origin contributes to DNA methylation patterning, while shared skin tissue environment has limited effect on epidermal keratinocytes. Hypomethylated SE-DMRs are in proximity to genes with SE relevant functions. They are also enriched for enhancer- and promoter-associated histone modifications in SE-derived cells, and for binding motifs of transcription factors important in keratinocyte and mammary gland biology. Thus, epigenomic analysis of cell types with common developmental origin reveals an epigenetic signature that underlies a shared gene regulatory network
Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data
We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars
Spark: A navigational paradigm for genomic data exploration
Biologists possess the detailed knowledge critical for extracting biological insight from genome-wide data resources, and yet they are increasingly faced with nontrivial computational analysis challenges posed by genome-scale methodologies. To lower this computational barrier, particularly in the early data exploration phases, we have developed an interactive pattern discovery and visualization approach, Spark, designed with epigenomic data in mind. Here we demonstrate Spark's ability to reveal both known and novel epigenetic signatures, including a previously unappreciated binding association between the YY1 transcription factor and the corepressor CTBP2 in human embryonic stem cells
- …
