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Spark: A navigational paradigm for genomic
data exploration
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Biologists possess the detailed knowledge critical for extracting biological insight from genome-wide data resources, and
yet they are increasingly faced with nontrivial computational analysis challenges posed by genome-scale methodologies.
To lower this computational barrier, particularly in the early data exploration phases, we have developed an interactive
pattern discovery and visualization approach, Spark, designed with epigenomic data in mind. Here we demonstrate
Spark’s ability to reveal both known and novel epigenetic signatures, including a previously unappreciated binding
association between the YY1 transcription factor and the corepressor CTBP2 in human embryonic stem cells.

[Supplemental material is available for this article.]

A pressing challenge arising from the productivity of large-scale

data-generating consortia, such as the Encyclopedia of DNA Ele-

ments (ENCODE) Project (The ENCODE Project Consortium 2012)

or the Roadmap Epigenomics Project (Bernstein et al. 2010), is

ensuring that these data are accessible to the biological community

for analysis. While public repositories provide easy access to pri-

mary data, subsequent data processing and analysis can pose

a significant computational hurdle to many biologists. In addition,

the depth and breadth of these resources are unprecedented, and

much of the initial analysis may be exploratory in nature. The

biologically interesting signals may be too poorly understood at

the outset to be identified and analyzed in an automated fashion.

Visualization is a powerful approach in such cases. Not only does it

lower the computational barrier for use, but also it is particularly

effective in facilitating human reasoning about complex data,

which is essential during this early exploration phase.

Genome browsers are one such class of visualization tool that

have enjoyed widespread popularity among biologists and that

frequently serve as the primary means of examining genome-wide

data during the initial inspection and discovery phases. Part of

their power comes from the ability to integrate diverse data sets by

plotting them as vertically stacked ‘tracks’ across a common ge-

nomic x-axis. Genome browsers have played an important role in

increasing the accessibility of large public data sets, for example,

the ENCODE data resource is currently hosted by the UCSC Ge-

nome Browser (Kent et al. 2002).

However, the power of genome-wide data sets is in their ability

to reveal global regulatory patterns that would be difficult, if not

impossible, to extrapolate from studies of individual loci. Genome

browsers inherently limit the data view to individual loci, and while

invaluable for visualizing data patterns at specific regions of interest,

they have limited power to facilitate global analysis. For many types

of queries, there is a mismatch between the level of data abstraction

at which the investigator wishes to interrogate the data set (e.g.,

gene set) and the level at which the data are displayed in a genome

browser (e.g., individual gene). As a result, computational experts

typically conduct such global analyses with custom tools. Recently,

the Human Epigenome Browser (Zhou et al. 2011) enabled users to

filter the genomic x-axis to only annotated genes involved in a

pathway of interest, as queried by a KEGG identifier. This is an im-

portant step toward replacing the genome coordinate axis with

a functional axis and enabling comparisons of data tracks across

multiple loci within the genome browser framework, but depending

on the size of the gene set, it can still be challenging to obtain an

overview of the data patterns from such a view.

There are several good examples of computational methods

that generate biologically meaningful genome-wide data summa-

ries. One common approach used to interpret epigenomic data,

such as histone modifications and DNA methylation, is to identify

and functionally characterize combinatorial data patterns. For

example, methylation of both lysine 4 and lysine 27 on histone H3

is an epigenetic signature characteristic of embryonic stem cells,

termed a ‘bivalent domain,’ thought to silence developmental

genes while keeping them poised for activation (Azuara et al. 2006;

Bernstein et al. 2006). Early work in signature detection clustered

well-annotated promoters on the basis of specific histone modifi-

cation patterns derived from chromatin immunoprecipitation

(ChIP) coupled microarray data (ChIP-chip) (Heintzman et al.

2007). Both seqMINER (Ye et al. 2011) and Cistrome (Liu et al.

8Present address: Department of Biochemistry & Molecular Biol-
ogy, Norris Comprehensive Cancer Center, University of Southern
California, Los Angeles, California 90089, USA.
9Corresponding author
E-mail cydneyn@bcgsc.ca
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.140665.112.
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2011) are analysis tools that include such a clustering approach

and provide cluster visualization through static heatmaps. A prob-

abilistic method, ChromaSig, subsequently eliminated the de-

pendence on existing annotations and offered a way to discover

chromatin signatures de novo by searching genome-wide using

data from ChIP followed by sequencing (ChIP-seq) (Hon et al.

2008). More recently, hidden Markov model (HMM), and Bayesian

network approaches have been applied to uncover recurrent

chromatin states (Ernst and Kellis 2010; Hoffman et al. 2012).

However, none of these approaches support interactive data

exploration.

All of the above tools produce static summary images, typi-

cally in the form of heatmaps and there are few or no mecha-

nisms by which to dynamically guide the analysis based on hu-

man knowledge of the biological system under study. Here we

present Spark, a visualization approach that employs clustering to

create a global data overview and high-level entry point for anal-

ysis, while also enabling interactive drill-down to the supporting

data at the level of individual loci. It is intended to facilitate re-

sponsive exploratory navigation through a genome-wide data set

and to be used as a complement to genome browsing. Its novelty

over existing tools lies in its support of user-guided clustering,

specifically enabling users to split existing clusters into subclusters

and thus direct the clustering algorithm toward patterns of in-

terest. Given that the clusters are generated across a set of user-

specified input regions, Spark supports the analysis of both well-

annotated regions and potential novel elements, such as those

identified as having enrichments in a particular ChIP-seq experi-

ment. The tool is connected to popular external resources, for ex-

ample, the display links individual loci to the corresponding view

in the UCSC Genome Browser, and gene ontology (GO) analysis is

available at the cluster level by interfacing with the DAVID suite of

tools (Huang et al. 2009) and thus minimizes the need for pro-

grammatic data manipulation. Spark employs a very general clus-

tering technique with few parameters and can therefore flexibly

handle diverse data sets. The ENCODE and Human Epigenome

Atlas data sets are directly accessible through the Spark user in-

terface, and initial results suggest that Spark will be a valuable ex-

ploratory tool for these communities.

Results

Availability and installation

Spark is a Java application for all platforms and is currently avail-

able from http://www.sparkinsight.org. A sample clustering anal-

ysis is packaged with Spark and can be loaded from the initial

launch screen or from the Help menu. We provide a built-in user

guide and tutorial video, also linked from the initial launch screen

and Help menu. All of these supporting resources are additionally

available from the above Spark website.

The preprocessing and clustering steps of Spark are avail-

able as command-line utilities to facilitate batch processing

if desired. For convenience, we have run the Spark preprocess-

ing step on all 1800 Epigenome Atlas files (Release 7; http://

www.epigenomeatlas.org) using the set of reference regions

available in Spark and default parameters. This enables Spark

to load these resources in a much shorter time.

In addition to being deployed as a standalone package, Spark

is also available as a service within the Epigenome toolset of the

Genboree Workbench (http://www.genboree.org) (Challis et al.

2012). The Genboree deployment enables analysis of any private

or public data hosted at Genboree. It also supports simultaneous

processing of several Spark clustering analyses, which is not pos-

sible with the standalone tool. A tutorial video demonstrating

these features is available from the Spark website.

Questions and comments about Spark can be directed to the

Spark Google Group: http://groups.google.com/group/spark_users/.

Overview

A Spark analysis begins with two user inputs: (1) one or more data

files and (2) a set of regions. Wiggle/bigWig and GFF3 formats are

accepted for these two inputs, respectively. Within Spark’s graph-

ical user interface (GUI), a user can either select files from the listed

ENCODE and Epigenome Atlas data resources or can specify their

own data files either as URLs or by browsing their local file system.

The user-specified regions can be any set of genomic coordinates,

for example, the regions flanking known transcriptional start site

(TSS) annotations or defined by a set of ChIP-seq enrichment

peaks. Several human reference region sets are also available

through the GUI. Spark extracts data matrices from the specified

regions, which are then binned and normalized (Fig. 1, step 1).

Figure 1. The Spark workflow. In step 1, the user’s input data and re-
gions of interest are preprocessed to enable rapid data retrieval in later
steps. (Gray) Data enrichment peaks for two data samples; (vertical black
boxes) user’s regions of interest (r1–r5) centered on transcriptional start
sites (TSSs). A data matrix is extracted for each input region and oriented
according to strand. Rows in these matrices correspond to data samples,
while the columns represent data bins along the genomic x-axis; two bins
per region are used in this diagram. The values are then normalized to be
between 0 and 1, represented here by white and dark blue, respectively. In
step 2, the matrices are clustered. k = 2 in this diagram, resulting in two
clusters (c1 and c2). In step 3, the clusters and their region members are
viewed in the Spark interactive visualization interface.
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These values form the basis of the clustering and are written to

a binary file for faster future reloading.

The preprocessed data are then clustered using k-means

clustering (Fig. 1, step 2) using a user specified number of clusters

(k). This technique was chosen for its effectiveness, its relative

simplicity, and runtime speed. Clusters are also written to text files

for reuse.

Finally, the analysis output is displayed in the Spark GUI (Fig.

1, step 3). The interactive visualization encompasses two core

components: a cluster overview panel, which provides a summary

of each cluster, and the region browser. For a video demonstration

of the interface, see the Spark website. In the cluster overview

panel, clusters are initially sorted from left to right by decreasing

number of regions. Each cluster is represented by a heatmap

computed by averaging the data matrices from the cluster’s

member regions. A histogram immediately above the cluster panel

indicates the number of regions per cluster. When a user selects

a given cluster, data matrices from the cluster’s regions are dis-

played as heatmaps in the region browser, where they are sorted by

chromosome position. The genome coordinates are displayed be-

low each individual region in the browser, and a context menu

provides a hyperlink to that region in the UCSC Genome Browser.

The interface is also equipped with search functionality, enabling

a user to easily locate a region of interest within the clustering.

Interactive cluster refinement

The general problem of finding a globally optimal partitioning of

d-dimensional data into k sets is known to be NP-hard. Heuristic

algorithms, such as k-means clustering, are therefore used to effi-

ciently find a local optimum and come with the risk of reporting

poor solutions. Even if a globally optimal solution was attainable,

clustering involves minimizing some mathematical criterion, and

it is very possible that such a criterion will not sufficiently capture

the features a biologist would use to categorize their data.

The philosophy behind Spark is to employ a simple and

computationally efficient clustering algorithm (k-means) and to

augment it by allowing the user to interactively guide the output

according to their expert biological knowledge. This is done

by enabling interactive cluster splitting whereby a user can run a

k-means clustering using k = 2 on only the subset of regions con-

tained within the selected cluster. An additional discussion of the

initial choice of k is provided in the Supplemental Material. This

approach synergizes automated clustering with user feedback to

produce a more powerful exploration tool.

Interactive GO analysis

The functional classification of regions bearing interesting data

signatures is a natural and common next analysis step. Spark

supports the interactive analysis of gene ontology (GO) term en-

richments for each cluster within the GUI. This is achieved

through interfacing with the DAVID suite of web-based tools

(Huang et al. 2009).

Applications

Epigenetic patterns flanking TSSs

To validate our approach, we applied Spark to sequencing-based

histone modification, DNA methylation, and expression data in

H1 human embryonic stem cells (hESCs) (Harris et al. 2010) across

transcriptional start sites (TSSs) where epigenetic signatures have

been previously characterized (Lister et al. 2009; Hawkins et al.

2010). Trimethylation of Histone H3 Lys4 (H3K4me3) or Lys27

(H3K27me3) have positive and negative regulatory effects on

transcription, respectively (for review, see Schuettengruber et al.

2007). These two modifications collocate to form ‘bivalent’ do-

mains at the promoters of developmentally important genes in

embryonic stem cells, serving to silence these genes while keeping

them poised for lineage-specific activation (Azuara et al. 2006;

Bernstein et al. 2006). These modifications therefore discriminate

three main classes of promoters in embryonic stem cells: active,

repressed, and poised (Mikkelsen et al. 2007). Spark successfully

recapitulates these classes of TSSs in hESCs (Fig. 2A): From left to

right, the first cluster is clearly marked with H3K4me3 and pos-

sesses an RNA-seq signal indicative of transcriptional activity, the

second cluster bears the bivalent signature of both H3K4me3 and

H3K27me3, and the third cluster appears transcriptionally in-

active. Only the transcriptionally active and poised clusters (Fig.

2A) have notable CpG densities, consistent with previous obser-

vations that H3K4me3 predominantly localizes to CpG-rich pro-

moters, suggesting important regulatory differences between pro-

moters at the two extremes of CpG density (Mikkelsen et al. 2007).

Using Spark’s option to launch DAVID’s Functional Annotation

Tool (Huang et al. 2009), we find that the poised cluster shows

significant enrichment in the terms ‘homeobox’ (P < 1 3 10�59),

‘regulation of transcription’ (P < 1 3 10�17), and ‘embryonic

morphogenesis’ (P < 1 3 10�31), consistent with earlier charac-

terizations of bivalent domains overlaying developmentally im-

portant transcription factors (Bernstein et al. 2006).

These data can be further explored using Spark’s interactive

cluster splitting mechanism. For example, we can interactively

split the poised cluster to produce two groups, one bearing a much

broader H3K27me3 signal than the other (Fig. 2B, c1-2-1 and

c1-2-2). This refined clustering is consistent with a report sug-

gesting that the minority of bivalent sites contain ‘wide’ H3K27me3

signals extending over regions of at least 5 kb, while the majority

shows punctate H3K27me3 signatures (Mikkelsen et al. 2007).

Bivalent regions have been reported to be hypomethylated

(Brunner et al. 2009; Meissner et al. 2008) and in this study, we

employed a methylation-sensitive restriction enzyme assay (MRE)

to detect unmethylated CpGs, and a methylation-dependent IP

procedure (MeDIP) to enrich for methylated CpGs. Intriguingly,

Spark highlights how closely the absence of DNA methylation,

indicated by the strong MRE sequencing (MRE-seq) and weak

MeDIP sequencing (MeDIP-seq) signals, tracks with H3K27me3

localization at bivalent sites.

In a similar fashion, cluster splitting can be used to explore

the transcriptionally inactive class of TSSs (Fig. 2A, c2). This group

appears to be heterogeneous, with a subcluster displaying a strong

H3K9me3 signal (Fig. 2B, c2-1-2). This H3K9me3 containing group

includes several gene clusters, for example, the olfactory receptors

(ORs) and the late cornified envelope (LCE) gene family, as

reported recently (Hawkins et al. 2010). The users’ ability to direct

the subclustering in this way allows them to take advantage of

their biological knowledge to isolate interesting subsets that may

not have been immediately produced by an automated clustering

using default parameters and the same end k value.

Epigenetic patterns around YY1 binding sites

After validating Spark using previously published histone modifi-

cation and DNA methylation data from hESCs, we sought to apply it

to explore the genome-wide profiles of three transcription regulatory

Nielsen et al.
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factors and their relationships with particular epigenetic signa-

tures. This analysis was motivated by the hierarchical recruitment

model in Drosophila, which suggests that the sequence-specific

transcription factor, pleiohomeotic (PHO), recruits the polycomb

repressive complex 2 (PRC2), which in turn trimethylates H3K27

and leads to the binding of the polycomb repressive complex 1

(PRC1) (Wang et al. 2004). Polycomb group (PcG) proteins, which

include PHO and members of PRC1 and PRC2, typically function

in maintaining transcriptional repression and play essential roles

in normal development in most multicellular organisms (Morey

and Helin 2010). While the human ortholog of PHO, YY1 tran-

scription factor (also known as Yin Yang 1) (YY1), has identical

DNA binding specificities to PHO in vitro (Brown et al. 1998) and

can functionally compensate for loss of PHO in pho mutant flies

(Atchison et al. 2003), it remains unclear whether YY1 plays a role in

triggering a regulatory cascade that results in H3K27 trimethylation

and subsequent transcriptional silencing in mammalian cells.

To investigate this model, we profiled three factors in hESCs

using ChIP-seq: (1) YY1; (2) a component of PRC2, suppressor of

zeste 12 (SUZ12); and (3) the corepressor C-terminal binding pro-

tein 2 (CTBP2), which is thought to play a role in YY1 binding and

PcG recruitment in fly (Srinivasan and Atchison 2004). Using

Spark, these ChIP-seq profiles were explored and integrated with the

previously described DNA methylation and histone modification

Figure 2. Clustering analysis at annotated TSSs. (A) Histogram indicates the number of regions in each cluster, and the overlaid dendrogram traces the
interactive cluster splitting events (initial clustering with k = 2, followed by one manual split of cluster c1 into c1-1 and c1-2). Chromatin modification
(blue), DNA methylation (green; MeDIP and MRE indicate methylated and unmethylated CpGs, respectively), and RNA-seq (orange) data from H1 hESCs
together with genomic CpG density values (gray) were clustered using a bin size of 300 bp across 6-kb windows centered on RefSeq transcriptional start
sites (TSSs). (B) Further exploration and interactive refinement of the clusters from A.

Spark: A paradigm for genomic data exploration
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data from hESCs. To avoid limiting our analysis to annotated

promoter or enhancer regions, we adopted a data-driven approach

and took advantage of Spark’s flexibility to use the data peaks

themselves to define the input region set for clustering. For this,

region boundaries were defined as 63 kb from each YY1 peak

center using the top 5% of peaks sorted by peak height.

The hierarchical recruitment model introduced above pre-

dicts colocalization of YY1 with H3K27me3. Strikingly, no YY1-

centered cluster shows a strong H3K27me3 signal (Fig. 3). In fact,

only 1% of the YY1 peaks share an overlap with H3K27me3. This

trend is robust even when the peak threshold is relaxed (<5% of

YY1 peaks overlap a H3K27me3 peak in the full set). Our results

indicate that, at most, only a minority of YY1 binding events are

involved in H3K27me3 deposition.

Further exploration of the YY1-centered clusters in Spark

suggests that YY1 forms mutually exclusive complexes in hESCs

with two important coregulators, SUZ12 and CTBP2 (Fig. 3B).

SUZ12 and YY1 were found to colocalize within intergenic regions

(cluster c1-1) and gene bodies (clusters c1-1 and c1-2-1) and at

centromeres and telomeres (cluster c1-2-2). The absence of

H3K27me3 in these clusters was initially surprising given that

SUZ12 is a component of PRC2, which has known histone methyl-

transferase activity. However, this activity is mediated by EZH2,

which may be absent at these sites. Alternatively, PRC2 can also

methylate H1K26 (Xu et al. 2010), and it is possible that these sites

display this mark. Alternatively, YY1 and SUZ12 may colocate with

a histone demethylase, which has converted the H3K27me3 to

H3K27me2 or H3K27me1. In subsequent motif analysis performed

outside of Spark (see Methods), none of these clusters show enrich-

ment for the canonical YY1 motif, suggesting that further in-

vestigation is needed to determine whether these patterns arise from

direct YY1 binding or as a result of an alternate YY1 recruitment

mechanism.

In contrast, YY1 motif enrichment (P < 0.0001) is observed at

sites of colocalization with CTBP2 (cluster c2). These regions dis-

play strong H3K4me3, H3K9Ac, and RNA expression signals in

Spark characteristic of transcriptionally active promoters, and

subsequent comparison to known annotations outside of Spark

reveals that the majority (88%) of these YY1 peak centers are

within 2 kb of an annotated TSS. Individual regions can be viewed

in the region browser (Fig. 3C) or via links to the UCSC Genome

Browser (Fig. 3D). CTBP2, absence of which is embryonic lethal in

mice (Hildebrand and Soriano 2002), is typically considered to

function as a corepressor in mammalian cells (Chinnadurai 2003).

There exists some evidence that the Drosophila CtBP homolog

possesses a context-dependent transcriptional activation function

(for review, see Chinnadurai 2003); however, the observed colo-

calization with YY1 at transcriptionally active TSSs has not been

previously reported. GO analysis points to these genes being

enriched in roles of RNA binding and processing, suggesting po-

tential novel regulatory roles for CTBP2 and YY1 in hESCs.

Discussion
Spark is motivated by the need for data exploration tools that fa-

cilitate initial investigation of genome-wide data sets by the bi-

ology community. We recognize that the current paradigm of

delegating analysis to a comparatively small community of com-

putational experts will not effectively scale to the analysis de-

mands of the current and ever-growing data resources. It is essen-

tial that the broader biology community is able to actively conduct

initial inquiries and thus formulate the more detailed and bi-

ologically motivated hypotheses that warrant in-depth inves-

tigation. Visualization techniques are ideal for such applications in

that they effectively lower the computational barrier for use while

providing a powerful mechanism to facilitate human reasoning

about complex data. We propose a visualization method that

blends automated clustering with user interaction to provide

a navigational tool that offers both meaningful data overviews

and access to the relevant data details on demand.

The approach embodied in Spark has several strengths: (1) it

employs a very general clustering technique with few parameters,

which can flexibly handle diverse data sets; (2) it is not dependent

on existing annotations, but rather clusters data across a user-

specified set of input regions that can be known or novel elements;

(3) it provides an interactive visual interface that enables simul-

taneous viewing of both genome-scale data signatures and patterns

at individual loci, providing information about content and vari-

ation; and (4) it offers users interactive cluster refinement capa-

bilities, enabling them to dynamically guide the clustering.

To facilitate using Spark with existing public resources, we

have integrated the data inventory of the ENCODE Project and the

Roadmap Epigenomics Project directly into the Spark GUI. We also

support import of a user’s own data in standard formats (wig/

bigwig). Following the design philosophy to leverage existing and

widely used tools, we link each locus in the Spark display to the

corresponding view in the UCSC genome browser and also in-

terface with the DAVID GO analysis tools to enable downstream

functional analysis without the need for programmatic manipu-

lation. In addition to being available as a standalone software

package, Spark is also deployed as a service within the Epigenome

toolset of the Genboree Workbench.

One natural direction for future work would be to incorporate

additional clustering techniques into Spark. In particular, methods

that first identify the subset of data tracks that are most in-

formative for clustering may be valuable as the number of input

data tracks grows. However, one insight that emerged while using

Spark for analysis is that the criteria for defining similarity between

data patterns can vary greatly depending on the application.

A researcher may be most interested in regions that show dis-

tinct positional distributions of data across the query regions, or

they may be primarily interested in regions with different signal

amplitudes. There is unlikely to be an optimal distance metric or

clustering algorithm for all features of biological interest. Rather,

what seems most promising is to provide easy-to-understand

clustering methods and then exploit the biologist’s knowledge

and judgment to guide the clustering to construct subsets of

interest for further inquiry. The interactive cluster manipulation

functionality currently in Spark is only a first step in this di-

rection and warrants further investigation.

Through our application examples using data from the

ENCODE and Human Epigenome Atlas projects, we have dem-

onstrated Spark’s ability to discover novel data patterns from a di-

verse collection of genome-wide data types. These signatures were

not readily apparent through a genome browser view and would

otherwise have required custom computational manipulation to

obtain. We anticipate that Spark will be of widespread use in

exploring these large public data sets and will increase the ac-

cessibility of these resources to the broader biology community.

It is also our hope that the navigational paradigm captured in

Spark will inspire other visualization methods that complement

traditional genome browsers by offering interactive, high-level,

functional summaries of genomic data as an entry point for

exploratory analysis.
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Figure 3. Clustering analysis of YY1 binding sites. (A) Histogram indicates the number of regions in each cluster, and the overlaid dendrogram traces
the interactive cluster splitting events. (B) ChIP-seq data for YY1, CTBP2, SUZ12, and histone modifications (blue) together with MRE-seq and MeDIP-
seq (green) and RNA-seq (orange) data from H1 hESCs were clustered using a bin size of 300 bp across 6-kb windows centered on sites of YY1 ChIP-seq
enrichment. (C ) Scrollable region browser: Data from individual regions within the currently selected cluster (c2) can be interactively viewed (five regions
displayed at one time, r1–r5). (D) A context menu provides a hyperlink to the corresponding region display within the UCSC Genome Browser (view of r1
shown).
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Methods

ChIP-seq
Human embryonic stem cells (hESCs) were obtained from Cellular
Dynamics as part of a large batch of cells prepared for the ENCODE
Consortium and the RoadMap Epigenome Consortium. Cell growth
and crosslinking conditions can be found at http://www.genome.
ucsc.edu/ENCODE/cellTypes.html. ChIP-seq experiments for the
histone modifications have been described previously (Harris
et al. 2010). The YY1 and SUZ12 ChIP assays were performed
using 5 3 107 cells per assay, and 28 mg chromatin was used for the
CTBP2 ChIP assay. ChIP assays were performed following the
protocol provided at http://farnham.genomecenter.ucdavis.edu/
pdf/FarnhamLabChIP%20Protocol.pdf, except that StaphA cells
were blocked only with BSA before use and the preclearing
step was omitted. The antibodies used were as follows: SUZ12
(Kirmizis et al. 2004), YY1 (Santa Cruz Biotechnology, sc-1703X),
and CTBP2 (BD Biosciences 612044). All ChIP and input samples
(10% of the amount of chromatin used per ChIP) were purified
using the QIAquick PCR purification kit (QIAGEN) according to
manufacturer’s instructions, and purified eluates were dissolved
in 50 mL of water. ChIP libraries were created and sequenced
according to the method described previously (Harris et al. 2010)
with the YY1, SUZ12, and CTBP2 libraries sequenced by the DNA
Technologies Core Facility at the University of California-Davis
(http://genomecenter.ucdavis.edu/dna_technologies/).

DNA methylation assays and RNA-seq

Methylation dependent immunoprecipitation and sequencing
(MeDIP-seq), methylation sensitive restriction enzyme sequencing
(MRE-seq), and RNA-seq were performed as previously described
(Harris et al. 2010).

Data processing

Illumina read sequences (75 bp) were aligned to the reference human
genome (hg18) using BWA (Li and Durbin 2009). FindPeaks 4.0.15
(Fejes et al. 2008) was subsequently used to detect enrichment peaks
at an FDR of 0.01.

Spark

Input data files were provided in wig format and input region co-
ordinates specified in GFF3 format. k-means clustering was per-
formed on 6-kb windows centered on Refseq TSSs. Any TSS having
a neighboring TSS within 3 kb was removed from the set prior to
clustering. For the YY1 analysis, clustering was performed on 6-kb
windows centered on high-confidence YY1 peaks (the top 5%
sorted by maximal peak height). Data values were normalized to be
between 0.0 and 1.0, according to the method described by Hon
et al. (2008), and k-means clustering was computed using Euclid-
ean distance. Spark version 1.1.0 was used for all analyses.

Motif analysis

Motif finding was performed using the W-ChIPMotifs web applica-
tion (http://motif.bmi.ohio-state.edu/ChIPMotifs/) ( Jin et al. 2009),
and Bonferroni-corrected P-values are reported.

Data access
Data used in this article have been submitted to the NCBI Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)
under accession numbers CTBP2, GSM935463; H3K27me3,

GSM428295; H3K36me3, GSM428296; H3K4me1, GSM434762;
H3K4me3, GSM410808; H3K9Ac, GSM410807; H3K9me3,
GSM428291; MRE-seq, GSM428286; MeDIP-seq, GSM456941;
RNA-seq, GSM484408; SUZ12, GSM935352; and YY1, GSE39096.
These data are also available from the Human Epigenome Atlas
(http://www.epigenomeatlas.org) and the ENCODE data listings
at the UCSC Genome Browser site (http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/).
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