2,796 research outputs found
Bostonia. Volume 12
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
A highly efficient two level diamond based single photon source
An unexplored diamond defect centre which is found to emit stable single
photons at a measured rate of 1.6 MHz at room temperature is reported. The
novel centre, identified in chemical vapour deposition grown diamond crystals,
exhibits a sharp zero phonon line at 734 nm with a full width at half maximum
of ~ 4 nm. The photon statistics confirm the center is a single emitter and
provides direct evidence of the first true two-level single quantum system in
diamond.Comment: 3 pages, 4 figure
Qubits from Number States and Bell Inequalities for Number Measurements
Bell inequalities for number measurements are derived via the observation
that the bits of the number indexing a number state are proper qubits.
Violations of these inequalities are obtained from the output state of the
nondegenerate optical parametric amplifier.Comment: revtex4, 7 pages, v2: results identical but extended presentation,
v3: published versio
MPCVD processing of titanium-diffused LiNbO3 waveguides: optical characterisation and waveguide restoration
This paper presents some initial findings that explore the material properties of LiNbO3 which has been exposed to a microwave plasma-enhanced chemical vapor deposition (MPCVD) environment. The LiNbO3 was found to undergo a process known as 'reduction' when exposed to this environment. A technique was developed to reverse this process and recover the LiNbO3, which is a crucial first step towards the integration of diamond-based single photon sources with LiNbO3 waveguide technologies
RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins
The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning
Quantum noise limits to simultaneous quadrature amplitude and phase stabilization of solid-state lasers
A quantum mechanical model is formulated to describe the coupling between pump intensity noise and laser frequency noise in a solid-state laser. The model allows us to investigate the limiting effects of closed-loop stabilization schemes that utilize this coupling. Two schemes are considered: active control of the quadrature phase noise of the laser and active control of the amplitude noise of the laser. We show that the noise of the laser in the actively stabilized quadrature is ultimately limited by the vacuum noise introduced by the feedback beamsplitter in both schemes. In the case of active control of the quadrature phase noise, the noise is also limited by the intensity noise floor of the detection scheme. We also show that some sources of noise in the passively stabilized quadrature can be suppressed and that it is possible to achieve simultaneous quadrature amplitude and phase stabilization of a solid-state laser. However, the quantum mechanically driven noise in the passively stabilized quadrature cannot be suppressed. While this poses the ultimate limit to the noise in the passively stabilized quadrature, we show that it is experimentally feasible to observe squeezing directly generated by a solid-state laser using this technique
Underground railroads: citizen entitlements and unauthorized mobility in the antebellum period and today
In recent years, some scholars and prominent political figures have advocated the deepening of North American integration on roughly the European Union model, including the creation of new political institutions and the free movement of workers across borders. The construction of such a North American Union, if it included even a very thin trans-state citizenship regime, could represent the most significant expansion of individual entitlements in the region since citizenship was extended to former slaves in the United States. With such a possibility as its starting point, this article explores some striking parallels between the mass, legally prohibited movement across boundaries by fugitive slaves in the pre-Civil War period, and that by current unauthorized migrants to the United States. Both were, or are, met on their journeys by historically parallel groups of would-be helpers and hinderers. Their unauthorized movements in both periods serve as important signals of incomplete entitlements or institutional protections. Most crucially, moral arguments for extending fuller entitlements to both groups are shown here to be less distinct than may be prima facie evident, reinforcing the case for expanding and deepening the regional membership regime
Unconditional Continuous Variable Dense Coding
We investigate the conditions under which unconditional dense coding can be
achieved using continuous variable entanglement. We consider the effect of
entanglement impurity and detector efficiency and discuss experimental
verification. We conclude that the requirements for a strong demonstration are
not as stringent as previously thought and are within the reach of present
technology
Statistical mechanics of voting
Decision procedures aggregating the preferences of multiple agents can
produce cycles and hence outcomes which have been described heuristically as
`chaotic'. We make this description precise by constructing an explicit
dynamical system from the agents' preferences and a voting rule. The dynamics
form a one dimensional statistical mechanics model; this suggests the use of
the topological entropy to quantify the complexity of the system. We formulate
natural political/social questions about the expected complexity of a voting
rule and degree of cohesion/diversity among agents in terms of random matrix
models---ensembles of statistical mechanics models---and compute quantitative
answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex
(ignore the under/overfull \vbox error messages
Impact of culture towards disaster risk reduction
Number of natural disasters has risen sharply worldwide making the risk of disasters a global concern. These disasters have created significant losses and damages to humans, economy and society. Despite the losses and damages created by disasters, some individuals and communities do not attached much significance to natural disasters. Risk perception towards a disaster not only depends on the danger it could create but also the behaviour of the communities and individuals that is governed by their culture. Within this context, this study examines the relationship between culture and disaster risk reduction (DRR). A comprehensive literature review is used for the study to evaluate culture, its components and to analyse a series of case studies related to disaster risk.
It was evident from the study that in some situations, culture has become a factor for the survival of the communities from disasters where as in some situations culture has acted as a barrier for effective DRR activities. The study suggests community based DRR activities as a mechanism to integrate with culture to effectively manage disaster risk
- …
