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A quantum mechanical model is formulated to describe the coupling between pump intensity noise and laser
frequency noise in a solid-state laser. The model allows us to investigate the limiting effects of closed-loop
stabilization schemes that utilize this coupling. Two schemes are considered: active control of the quadrature
phase noise of the laser and active control of the amplitude noise of the laser. We show that the noise of the
laser in the actively stabilized quadrature is ultimately limited by the vacuum noise introduced by the feedback
beamsplitter in both schemes. In the case of active control of the quadrature phase noise, the noise is also
limited by the intensity noise floor of the detection scheme. We also show that some sources of noise in the
passively stabilized quadrature can be suppressed and that it is possible to achieve simultaneous quadrature
amplitude and phase stabilization of a solid-state laser. However, the quantum mechanically driven noise in the
passively stabilized quadrature cannot be suppressed. While this poses the ultimate limit to the noise in the
passively stabilized quadrature, we show that it is experimentally feasible to observe squeezing directly gen-
erated by a solid-state laser using this technique.
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I. INTRODUCTION

Extremely stable lasers are required as the light sources in
high precision metrology experiments such as interferomet-
ric gravitational wave detectors �1–4� and in quantum optics
experiments �5�. Solid-state lasers, particularly those in a
miniature monolithic architecture �6�, have high intrinsic sta-
bility and are therefore the lasers of choice in these experi-
ments. However, given that laser fluctuations approaching
the quantum noise limit �QNL� would be preferred in such
experiments, even miniature monolithic solid-state lasers are
not sufficiently stable at all relevant frequencies �7�. Active
control of either or both the intensity and frequency of the
laser is commonly used to achieve the required stability.

In applications where the noise of the stabilized laser ap-
proaches the QNL, a quantum mechanical theory of both the
laser and the feedback loop is required. For example, quan-
tum mechanical theory shows that the output noise of an
active stabilization system is limited by the vacuum noise
introduced at the feedback beamsplitter �8,9�. More recently,
a linearized quantum mechanical model of an amplitude sta-
bilization scheme which explicitly included feedback to the
pump source of the laser predicted the same result �10�. This
prediction was tested experimentally in the same reference.
The effect of this type of feedback loop, often referred to as
a noise-eater, on the quadrature phase noise was not consid-
ered.

Recent experiments have shown that there exists a cou-
pling between the intensity noise of the pump in a diode
pumped Nd:YAG laser and the frequency noise of the laser.
These experiments have shown that the coupling is strong
enough to frequency lock the laser to a reference cavity by

feeding back to the intensity of the pump source via the
current to the pump diode lasers �11�. This technique has
been dubbed current lock. Subsequent experiments have
shown that the intensity noise of the laser can be reduced
over the active bandwidth of the current lock feedback loop
�12,13�. In other words, the quadrature amplitude noise un-
dergoes some degree of passive stabilization as a conse-
quence of the active phase stabilization loop.

A quantum mechanical model of the current lock tech-
nique would lead to a better understanding of the interplay
between amplitude and frequency noise suppression. Fur-
thermore, a quantum mechanical model would lead to an
estimate of the ultimate achievable stability by these tech-
niques. The purpose of this paper is to develop such a model
and to determine if there are noise penalties when using these
control loops.

It is common to lock the frequency of a laser to a high
stability reference frequency such as a spectroscopic feature
and/or a reference cavity. Figure 1�a� illustrates the laser fre-
quency stabilization scheme where the locking signal is fed
back to the optical power of the pump source using the
Pound-Drever-Hall �PDH� locking system �14�. Another
common stabilization technique that is applied to solid-state
lasers is to suppress the intensity noise of the laser using a
feedback loop. Such systems have been dubbed noise-eaters
and Fig. 1�b� illustrates such an intensity noise suppression
scheme.

The laser system consists of a pump diode laser, a power
source to supply current and to temperature stabilize the di-
ode laser, and a Nd:YAG laser crystal. The frequency con-
trol loop requires a fraction of the Nd:YAG laser power to
be sent via a phase modulator to an optical cavity �OC� using

PHYSICAL REVIEW A 75, 013802 �2007�

1050-2947/2007/75�1�/013802�8� ©2007 The American Physical Society013802-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15037037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.75.013802


a partially reflecting beamsplitter, and the signal reflected off
the OC to be detected on a high speed and quantum noise
limited photodetector. The photocurrent is demodulated to
produce an error signal for use in the feedback loop. The
intensity noise-eater, on the other hand, requires a fraction of
the Nd:YAG laser power to be sent directly to a high speed
and quantum noise limited photodetector, using a partially
reflecting beamsplitter. The control signal in this case is the
difference between the photocurrent and some precision volt-
age reference.

The model we will present in this paper will show that
there exist two well defined regimes for the system depicted
in Fig. 1. In the first regime the laser pump noise is large and
hence raises the laser noise to a level well above the quantum
noise limit. In the second regime the pump noise is small so
the laser output noise is limited by the internal laser dynam-
ics.

The paper is structured as follows: In Sec. II the coupling
between pump intensity and laser frequency is incorporated
into a linearized quantum mechanical model for a solid-state
laser. The limits to the quadrature amplitude and phase noise
of the laser under closed-loop frequency feedback are dis-
cussed in Sec. III. The behavior of the laser under closed-
loop intensity feedback is discussed in Sec. IV and we con-
clude in Sec. V.

II. LASER THEORY

The basic laser model has been discussed in previous pub-
lications �7�. Here we extend the analysis to include ther-
mally induced coupling between the intensity noise �also
known as quadrature amplitude noise� of the pump source
and the quadrature phase noise spectrum of the laser. Solu-
tions for the dynamics of the laser are most conveniently
found in the Heisenberg picture where we decompose trav-

elling wave optical operators as Âk= Āk+�Âk�t�, where Āk

= �Âk�, and write the operator for the internal laser mode as

â= ā+�â�t� with ā= �â�. Quadrature amplitude and phase

fluctuation operators for an arbitrary field Âk are defined,

respectively, as �X̂k
+=�Âk+�Âk

† and �X̂k
−= i��Âk−�Âk

†�.
The active atoms of the laser are modeled by a three-level

system with lasing occurring between the upper two levels.
Incoherent pumping occurs at a rate �, spontaneous emission
from the upper laser level occurs at a rate �t and from the
lower lasing level at a rate �. The coupling of the lasing
transition to the laser mode is given by K which is propor-
tional to the stimulated emission cross section of the transi-
tion. The total cavity decay rate 2� comprises components
due to output coupling �m=Tc /2nl and intracavity losses
�l=Lc /2nl and is given by 2�=2��m+�l�. Here T is the
transmissivity of the laser output coupler, L denotes the
losses in the cavity, c is the speed of light in vacuum, l is the
physical path length of the laser cavity, and n is the refractive
index of the laser medium. The population of an atomic en-
ergy level k is given by Jk.

In a system such as Nd:YAG the depletion of the ground-
state population is very small and so J1�1. Also, the popu-
lation probability of the lower lasing level is very small due
to its rapid decay rate �i.e., J2� �1�. We also make the
approximation that expectation values can be factorized. Un-
der these conditions, the steady-state solution for the internal
laser mode may be found �7�:

ā ��K� − 2��t

2�K
. �1�

After linearization around this steady-state solution the
quadrature amplitude and phase fluctuations of the output of
the laser are most easily calculated and expressed as transfer
functions in the Fourier domain as follows �15,16�:

�X+��� = Fv
+�Xv

+ + Fp
+�Xp1

+ + Fsp
+ �Xsp

+ + Fdip
+ �Xdip

− + Fl
+�Xl

+,

�2�

�X−��� = Fv
−�Xv

− + Fp1
− �Xp1

+ + Fp2
− �Xp2

+ + Fp
−�Xps + Fdip

− �Xdip
−

+ Fl
−�Xl

− + Fcav�Xcav, �3�

Fv
+ =

2�m��l + i��
��r

2 − �2� + i��l

− 1,

Fp
+ =

�2�m�Kā

��r
2 − �2� + i��l

,

Fsp
+ =

�4�m�t�Kā

��r
2 − �2� + i��l

,

Fdip
+ =

�4�m����t + �� + i��
��r

2 − �2� + i��l

,

Fl
+ =

�4�m�l��l + i��
��r

2 − �2� + i��l

,

FIG. 1. �a� A schematic diagram of frequency stabilization
scheme using current lock. �b� A schematic diagram of the intensity
stabilization scheme �noise-eater�.
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Fv
− =

2�m

i�
− 1, Fdip

− =
�4�m�

i�
,

Fl
− =

4��m�l

i�
, Fcav = − 2�ax

Ā

i�
,

�r = �2�Kā2, �l = Kā2 + �t + � , �4�

where the absence of hats on the fluctuation operators signi-
fies that we have made the transformation to the Fourier
domain. The steady-state photon flux emerging from the la-

ser is 	Ā	2=2�mNT 	 ā	2 and NT is the number of active atoms
contributing to the laser mode. Other parameters are �r, the
resonant relaxation oscillation �RRO� frequency, and �ax
=qc /nl the resonant frequency of the laser cavity �for q an
integer�.

The input noise operators are noise from the vacuum field
entering at the output coupler, �Xv

±���, dipole fluctuation
noise, �Xdip

− ���, noise introduced from intracavity losses,
�Xl

±���, noise from spontaneous emission out of the upper
laser level, �Xsp

+ , and noise introduced by fluctuations of the

length of the cavity, �Xcav=
��nl�

nl , where ��nl� are the fluctua-
tions in the optical path length of the cavity and nl is the
average optical path length. The noise of the pump source
�Xp

+ couples to the amplitude quadrature according to the
pumping efficiency �i such that �Xp1

+ =��i�Xp
++�1−�i�Xvp

+ ,
where �Xvp

+ is a vacuum operator. We also have �Xp2
+

=�1−�i�Xp
+−��i�Xvp

+ .
Most of these transfer functions have been discussed in

previous publications �see, for example, �15� for plots of
transfer functions to intensity noise and �16� for transfer
functions to phase noise�. Here we identify the new transfer
functions Fp1

− , Fp2
− , and Fp

− representing the coupling of in-
tensity noise of the pump source and other spontaneous noise
sources to the phase noise of the laser due to the dissipation
of excess pump energy in the medium.

Excess pump energy is released by the decay of the lower
lasing level �level 2� as phonons can couple to the medium.
In contrast we assume spontaneous photons emitted as a re-
sult of upper lasing level decay do not couple to the medium.
Excess pump energy is released both by active �i.e., lasing�
atoms and by inactive atoms. In both cases the energy re-

leased is proportional to ��Ĵ2�. In turn the quantum fluctua-

tions in this energy are proportional to ��Ĵ2, where �Ĵ2

= �Ĵ2�− Ĵ2. From the fluctuation equations given in �7� we
derive the following transfer function describing the contri-
bution of pump fluctuations to energy fluctuations arising
from the decay of active atoms:

E1 =
K�i2�ā − i��ā2K + �t�

Ed
,

Ed = �K�i2�ā − i�Kā2��� + 2i�� − i���t + i���� + i��
�5�

Additional spontaneous noise terms also coupled to the
phase noise through this mechanism are given by

Xps1 = �� �p

hcPp

K�i2�ā − i��ā2K + �t�
Ed

��i��X2
+,

Xps2 = �� �p

hcPp

− i��i2����l�Xl
+ + ��m�Xv

+�
Ed

,

Xps3 =
i����i2� − āi��

Ed

��pK��i��t − ��2�ā − �i���
hcPp��t

�Xdip
− ,

Xps4 = − �� �p

hcPp

�2

Ed

��i� − 2�ā�Xsp
+ , �6�

where �X2
+ is noise due to spontaneous emission out of the

lower laser level. The energy dissipated by the inactive at-
oms, mechanism �ii�, also gives rise to a pump noise transfer
function given by

E2 =
�t

Edi
, Edi = ��t + i���� + i�� , �7�

and spontaneous noise terms

Xps5 =� �p

hcPp

��t

Edi

��1 − �i���X2
+,

Xps6 =� �p

hcPp

i��

Edi

��1 − �i���Xsp
+ . �8�

The coupling of the energy fluctuations to the phase noise
of the laser is modeled as thermally induced changes in the
optical path length of the laser cavity which then couple to
the quadrature phase fluctuations of the laser via Fcav. Putting
everything together the new transfer functions are

Fp1
− = ���iE1Fp

−,

Fp2
− = ���1 − �i�E2Fp

−,

Fp
− = Fcav�	n + �n − 1��1 + 
�	 + n3	Ct,���TFT/n ,

�T =

T

kl
�Pp

hc

�p

1 −

�p

�l
�, FT �

1

1 + i��T
,

�T � �Cr0
2/k, �Xps = �i=1,6Xpsi. �9�

At low frequencies E1=E2=1/� and thus the expression
for the quadrature phase fluctuations simplifies to

�X− = Fv
−�Xv

− + Fp
−�Xp

+ + Fdip
− �Xdip

− + Fl
−�Xl

− + Fcav�Xcav,

�10�

where Fp
− is as defined in Eq. �9� and the contribution of the

spontaneous emission noise term �Xps is wrapped up in the
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cavity length fluctuation term �Xcav. Also, � is the density of
the laser material, C is the specific heat, r0 is the radius of the
pump spot, k is the thermal conductivity, 	n= �1/n�dn /dT
characterizes the rate of change of refractive index with tem-
perature, 	= �1/ l�dl /dT is the thermal expansion coefficient,

 is Poisson’s ratio, and Ct,� is the photoelastic coefficient
�17–19�. Also, Pp is the average power of the pump laser, �p
is the wavelength of the pump laser, �l is the wavelength of
the laser emission, and h is Planck’s constant.

Physically, thermally induced changes in the optical path
length comprise changes in the refractive index with tem-
perature, changes in the physical path length with tempera-
ture, and changes in the refractive index due to the stress-
optic effect. These are represented, respectively, in the square
brackets in Eq. �9�. Conversion of energy released by the
atoms into change of temperature in the laser crystal is rep-
resented by �T in Eq. �9�, see, for example, �19,20�. The
absolute magnitude of the conversion of pump power to tem-
perature change in the crystal depends on the details of the
pumping, cooling, and crystal geometries �19�. These details
are absorbed into the scaling constant 
T. In an end-pumped,
edge-cooled geometry for Nd:YAG with an approximately
uniform intensity distribution for the pump, the scaling con-
stant would lie in the range 1–100. Assuming a uniform
intensity distribution in the case of a miniature monolithic
Nd:YAG laser pumped by a single-mode laser is a gross
approximation. Given that 
T is so widely varying �it de-
pends on pump spot size compared to the crystal cross sec-
tion among other things�, errors in this approximation can be
absorbed by 
T. Note that 
T will not be unity for a perfect
Gaussian pump spot.

The term FT represents the thermal low-pass filter of the
laser crystal for a thermal time constant of �T. Previous
works investigating photothermally induced noise in empty
cavities have shown that the transfer function is rather more
complex than a simple low-pass filter �21,22�. However, the
simplified transfer function will be an adequate approxima-
tion for our purposes.

The variances of the fluctuations in the quadrature ampli-
tude and phase �called quadrature amplitude and phase noise
for brevity� of a field relative to the QNL are

V± = 	�X±	2 = �
k

	Fk	2Vk, �11�

where V=1 implies noise at the QNL. These quantities are
related to the relative intensity noise �N� �measured in units

of 1/Hz� and frequency noise of the field �measured in
Hz2/Hz� by:

N =
	�P	2

P2 =
V+

Ā2
, �12�

V� = 	��	2 = 
���X−�

2Ā

2

=
�2V−

4Ā2
, �13�

where P= Ā2hc /�l is the average output power of the laser,
�P represents the spectral density of the power fluctuations,
the frequency fluctuation spectral density �in Hz/�Hz� is
	�� 	 =� 	��	, and the quadrature phase fluctuations are re-

lated to phase fluctuations via 	�� 	 = ��X−� /2Ā �16,25�.
The quadrature amplitude and phase noise spectra of the

laser have been discussed in detail in previous publications
�7,15,16�. It will suffice here to say that the laser noise in
both quadratures is the linear combination of several quan-
tum mechanically driven noise contributions and two techni-
cal noise contributions. The two technical sources of noise
are the intensity noise of the pump, which appears on both
quadratures, and the optical path length fluctuations of the
laser cavity, which only appears on the phase quadrature.
Both the quadrature amplitude and phase noise of the laser
fall into three main frequency regions. Table I summarizes
the quadrature amplitude and phase noise of the laser in each
of these frequency regions. The output noise has been ex-
pressed in the form of a noise floor with additive technical
noise because the technical sources of noise can, at least in
principle, be suppressed. When this occurs, the contributions
from the quantum mechanical noise sources dominate and
this noise floor represents the lowest possible output noise of
the free-running laser.

Figure 2 shows the quadrature amplitude and phase noise
of the laser when the intensity noise of the pump is set to the
QNL and also when the intensity noise of the pump is set to
an experimentally realistic value of 60 dB above the QNL.
The parameters are taken directly from experimental systems
�13,16�. To illustrate the coupling between pump intensity
noise and laser phase noise, we have set Vcav�0. The
Schawlow-Townes limit �STL� is normally defined in terms
of frequency noise. However, Eq. �13� allows us to convert
the STL into a limit in terms of quadrature phase noise such

TABLE I. Approximate noise limits of the free-running laser at each relevant frequency region. Here,
VSTL

− =8��m /�2 represents the quantum mechanically driven quadrature phase noise at low frequencies,
VN1��2��t /�r

2��1+2��t�
2 /K2�r

2� represents the magnitude of the quantum mechanically driven intensity
noise at low frequencies, and VN2�2��4�+�t� /�l

2 represents the magnitude of the relaxation oscillation
when driven by the quantum mechanical noise sources. We have assumed that the losses are negligible in
making these approximations.

Phase noise Amplitude noise

Frequency range Noise limit Frequency range Noise limit

��2�fT V−�VSTL
− + 	Fp

−	2Vp
++ 	Fcav	2Vcav ���r V+�VN1+Vp

+K� /�r
2

2�fT���� V−�VSTL
− + 	Fcav	2Vcav ���r V+�VN2+Vp

+K� /�l
2

��� V−�QNL ���r V+�QNL
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that VSTL
− =8��m /�2 �16�—this is shown as the dash-dotted

line in Fig. 2 for reference. The inset shows an expanded
view of the quadrature phase noise in the region indicated to
more clearly illustrate the relationship between VSTL and the
quadrature phase noise for a QNL pump.

III. LASER NOISE UNDER FREQUENCY STABILIZATION

Figure 1 shows that the output of the laser is split into two

beams, Âil the in-loop field and Âol the out-of-loop field. A
vacuum field �v̂� is introduced at the beamsplitter such that

Âil = i�1 − �Â + ���v̂�, Âol = ��Â + i�1 − ��v̂�, �14�

where � represents the power transmission of the beamsplit-
ter and we have used the symmetric beamsplitter convention
�23�. For frequency stabilization the in-loop field is phase
modulated at �m with modulation index � and sent to a
reference cavity with decay rate �c. The PDH error signal is
obtained by detection of the field reflected off the reference
cavity and subsequent filtering and demodulation of the de-
tected signal �see �24–27� and the references therein for
more details�. We shall assume for simplicity that the cavity
is already resonant with the laser frequency at dc, acousti-
cally stabilized, lossless, and impedance matched.

The PDH error signal may be written as vfb= v̄fb+�vfb
representing the dc and ac components of the error signal,
respectively. In the Fourier domain �vfb is

�vfb = − GĀ�1 − ����
 �

�c + �
���XA

− +� �

1 − �
�Xv�

+ ��
− 
�

2
�2

�2��XA
+�� + �m� −� �

1 − �
�Xv�

− �� + �m�� ,

�15�

where G��� is the electronic transfer function of the system
including the gain and filtering of the electronics, the respon-
sivity of the photodetector, and the demodulation efficiency
of the mixer. We have assumed perfect quantum efficiency
for the photodetector. Equation �15� is consistent with previ-
ous investigations of the measurement of laser phase fluctua-
tions using the PDH technique �24� except that the quantum
optical model explicitly shows the vacuum noise introduced
at the beamsplitter.

Under closed loop feedback, the pump noise becomes
�Xp

+���→�Xp
+���+�vfb���. The out-of-loop quadrature am-

plitude and phase fluctations are given in Eqs. �16� and �17�:

�Xol
+ = ���Fv

+�Xv
+ + Fsp

+ �Xsp
+ + Fl

+�Xl
+� + �1 − ��Xv�

−

+ ���Xp
+ Fp

+

1 + �F
+ ���Xdip

+ �Fdip
+ −

Fp
+�F

1 + �F

Fdip
−

Fp
− �

− ��
Fp

+

Fp
−

�F

1 + �F
�Fv

−�Xv
− + Fl

−�Xl
− + Fcav�Xcav�

−
�

�1 − �

Fp
+

Fp
−

�F

1 + �F
�Xv�

+ − ��
Fp

+

Fp
−

�

�8

1


 �

�c + i�
�

�F

1 + �F

���XA
+�� + �m� −� �

1 − �
�Xv�

− �� + �m�� , �16�

�Xol
− =

��

1 + �F
�Fv

−�Xv
− + Fdip

− �Xdip
− + Fl

−�Xl
− + Fp

−�Xp
+

+ Fcav�Xcav� −
�1 − ��Xv�

+ �1 + �F/�1 − ���

1 + �F

− ��
�

�8

1


 �

�c + i�
�

�F

1 + �F
��XA

+�� + �m�

−� �

1 − �
�Xv�

− �� + �m�� , �17�

�F = Fp
−G����Ā
 �

�c + i�
��1 − �� , �18�

where �F is a measure of the overall gain in the feedback
loop.

It is relatively straightforward to write down the output
variances of the feedback loop from Eqs. �11�, �16�, and �17�.
However, the resulting equations are bulky and the limiting
behavior of the system is more easily discussed by consider-
ing the output variances in the high gain limit, i.e., �F�1,
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FIG. 2. Plots of the quadrature amplitude and phase noise of the
laser when Vp

+=0 dB and when Vp
+=60 dB. The laser parameters

used to generate these traces are Pp=70 mW, �p=0.552 �pump
quantum efficiency�, �p=0.813 �m �13�, �l=1.064 �m, �m=4.28
�107 s−1, �l=1.74�107 s−1, l=26 mm, and �T=0.032 s. The
Nd:YAG parameters are: n=1.82, �t=4.3�103 s−1, K=6.6
�1011 s−1, 
T=1, �=4.55�103 kg m−1, 
=0.25, 	=7.2
�10−6 K−1, 	n=7.3�10−6 K−1, C=100 JK−1 m−1, and Ct,�=
−0.0025 Vcav=0.
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and in the no gain limit, i.e., �F�1. Physically these would
normally correspond to the variances inside and outside the
bandwidth of the feedback loop, respectively. The out-of-
loop variances in the high and no gain limits are

VHGL
+ ��� � ��
Fp

+

�F

2

Vp
+ + VAO

+ + 
Fdip
+ − Fp

+Fdip
−

Fp
− 
2

+ 
Fp
+

Fp
−
2�VPO

− +
�

1 − �
+

�2��c
2 + �2�

8�1 − ���2 ��
+ �1 − �� , �19�

VHGL
− ��� �

�

	�F	2
V−��� +

1

1 − �
+

��2��c
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where V+ and V− are the output amplitude and phase vari-
ances, respectively, of the free-running laser as calculated
using Eq. �11� and the free-running transfer functions, VAO

+

=V+− 	Fp
+	2Vp

+− 	Fdip	+Vdip
− and VPO

− =V−− 	Fp
−	2Vp

+− 	Fdip
− 	2Vdip

−

are the output variances of the free-running laser due to noise
sources only appearing in the amplitude and phase quadra-
tures, respectively. We have also set V+��m�=1.

Figure 3 shows the quadrature amplitude and phase noise
when the laser is free-running and when the frequency sta-
bilization loop is operational for experimental parameters
typical of a miniature monolithic laser. For the feedback
loop, we have chosen a level of feedback gain to give an
experimentally realistic 	�F	2�20 dB. For simplicity, we
have assumed that the transfer function of the electronics is a
single-pole low-pass filter with a 50 Hz corner frequency. In
practice, it is more likely that the feedback controller would
have a band-limited proportional-integral or proportional-
integral-differential architecture.

As required, the feedback loop suppresses the original
quadrature phase noise of the laser by the overall loop gain,
	�F	2. This noise is further diminished by virtue of the attenu-
ation of the beamsplitter. This effect is observed in the top
row of Fig. 3 where the phase noise of the laser is reduced by
the loop gain 	�F	2=20 dB over the frequency range 0–5 Hz.
Above 5 Hz, the thermal low-pass filter of the laser crystal
reduces the overall loop gain as 1/ f2 and unity gain is
reached at 40 Hz. This is why the noise suppression is ob-
served to decrease from 20 to 0 dB in the frequency range
5–40 Hz in the top row of Fig. 3. The decrease in loop gain
in this scenario is due entirely to the thermal low-pass filter
of the laser crystal and hence is a fundamental feature of
current lock rather than an artifact of the choice of electronic
transfer function.

The quadrature phase noise of frequency stabilized laser
systems may drop below the STL given sufficient loop
gain—for example, as in Fig. 3�c�. As a guide to the eye, the
curve labeled 	�F	2=0 in this panel approximately follows
the STL for f �1 MHz. Although not observed in Fig. 3
because the loop gain is inadequate, the fundamental lower
limit to the quadrature phase noise in this scenario is set by
the vacuum noise introduced at the feedback beamsplitter
and by the intensity noise floor of the PDH scheme �8,9�.

Central to the physics of simultaneous stabilization of am-
plitude and phase quadrature noise is that the technique of
feeding back to the intensity of the pump source will imprint
the feedback signal onto both quadratures of the laser. Thus,
in the high gain limit the current lock feedback loop acts on
the amplitude as well as the phase quadrature—albeit in a
less straightforward manner.

Noise common to both quadratures, such as Vp
+, can be

suppressed on the amplitude quadrature. This is an extremely
valuable effect from an experimental perspective as the in-
tensity noise of the pump tends to dominate other sources of
noise in current experiments. Figure 3�b� shows the intensity
noise of the laser under these conditions. This result is con-
sistent with experimental observations �12�.

However, there are two other effects which limit the ulti-
mate stability that can be achieved in the amplitude quadra-
ture. First, the feedback signal contains no information about
noise that appears only on the amplitude quadrature. Conse-
quently, there is no suppression of this noise beyond the
attenuation afforded by the beamsplitter. The second issue is
that noise normally only appearing on the phase quadrature
is amplified and imprinted onto the amplitude quadrature. As
the former process tends to reduce intensity noise and the
latter tends to increase intensity noise, the eventual intensity
noise of the laser in the high gain limit depends strongly on
the balance of these two competing effects.

The delicate balance between intensity noise suppression
and enhancement is illustrated Fig. 3�d�. At frequencies
where the loop gain is greatest �i.e., 0� f �5 Hz�, these
competing effects result in a slight decrease in intensity noise
compared to the unstabilized laser. In the range of frequen-
cies where the loop gain decreases due to the thermal low-
pass filter �i.e., 5–40 Hz�, the balance of these competing
effects is shifted to the point where the intensity noise is
actually greater than that of the free-running laser. Effec-
tively, the pump noise suppression decreases while the addi-
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FIG. 3. Plots of the quadrature amplitude and phase noise of the
laser when the current lock stabilization loop is active and inactive.
The parameters used to generate these traces are the same as for
Fig. 2. We also set �=0.5, 	�F	2=20 dB, and �=0.5.
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tion of quadrature phase noise increases and so an increase in
intensity noise results.

One somewhat negative conclusion that we can draw
from the preceding discussion is that current lock cannot be
used to suppress the RRO. The RRO is driven by numerous
noise sources and it cannot be eliminated by suppressing the
intensity noise of the pump source �see �15� and the second
row of the final column in Table I�. At best, current lock
would suppress only that component of the RRO arising
from the pump intensity noise.

A more positive outcome is that it may be possible to use
this technique to generate squeezing directly from the solid-
state laser. Previous work has shown that a free-running laser
pumped sufficiently far above threshold can transfer the in-
tensity noise of the pump to the output of the laser at low
frequencies with minimal excess noise on the output �see
�7,15� and the first row of the final column in Table I�. This
observation has, in the past, lead to the proposal to generate
low frequency squeezing directly from a solid-state laser by
pumping it well above threshold with a squeezed diode laser.
The model presented here suggests that current lock allows
us to arbitrarily suppress the apparent intensity noise of the
pump source and hence generate amplitude squeezing di-
rectly from the laser at low frequencies. This new approach
appears much more experimentally feasible than the previous
proposal. For example, with �p=0.9, Vp

+=30 dB, and all
other parameters as used in Fig. 2, we find that Vol

+ �−3 dB
at low frequencies.

Above the unity gain frequency of 40 Hz the quadrature
phase and intensity noise spectra are essentially in the no
gain limit. Figures 3�a�–3�d� as well as Eq. �21� show that
both the amplitude and phase quadrature noise in the no gain
limit are simply the variances expected from attenuation
through a beamsplitter of transmittivity �.

IV. LASER NOISE UNDER INTENSITY STABILIZATION

As with the frequency feedback system, the laser output is
split into the in- and out-of-loop fields as given in Eq. �14�.

Direct detection of the in-loop beam results in the feedback
signal

�vfb = − G����1 − �Ā��1 − ��XA
+ − ���Xv�

− � , �22�

where G��� is the electronic gain of the system including the
gain and filtering of the electronics as well as the responsiv-
ity of the photodetector. We explicitly assume ac-coupled
feedback and again have assumed perfect detection effi-
ciency. The pump amplitude fluctuations become �Xp

+���
→�Xp

+���+�vfb���. The variances of the out-of-loop quadra-
ture amplitude and phase fluctations in the high gain limit are
given in Eqs. �23� and �24�:
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+ ��� �
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	�F	2
V+ +
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1 − �
, �23�

VHGL
− ��� � ��
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−
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− + 
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Fp
+
2

+ 
Fp
−

Fp
+
2�VAO

+ +
�

1 − �
�� + �1 − �� , �24�

�F = Fp
+G���Ā�1 − �� . �25�

The variances of the output of the noise-eater in the no gain
limit are given by Eq. �21�. Figure 4 shows the quadrature
amplitude and phase noise when the laser is free-running and
when the frequency stabilization loop is operational. For
simplicity we have assumed that the transfer function of the
electronics is a single-pole low-pass filter with a 1 MHz cor-
ner frequency. In practice, it is more likely that the feedback
controller would have an ac-coupled, band-limited
proportional-differential architecture. The unity gain fre-
quency of the feedback loop is approximately 300 kHz.

Direct comparison of Eqs. �23� and �24� to the equivalent
equations for the current lock system reveals that the behav-
ior of the laser under intensity stabilization is essentially the

0

50

100

150

200

250

0

20

40

60

80

100

10 10 0 10 2 10 4 10 6 10 810 10 0 10 2 10 4 10 6 10 8-2 -2

Ph
as

e
A

m
pl

itu
de

Pump Noise 60dB Pump Noise 0dB

|γF|2=0

|γF|2=0

|γF|2=0
|γF|2=0

|γF|2=20dB

|γF|2=20dB

|γF|2=20dB
|γF|2=20dB

Frequency {Hz} Frequency {Hz}

(a) (c)

(d)(b)

Q
ua

dr
at

ur
e 

A
m

pl
itu

de
 a

nd
 P

ha
se

 N
oi

se
 {

dB
 a

bo
ve

 Q
N

L}

0

FIG. 4. Plots of the quadrature amplitude and
phase noise of the laser when the noise-eater loop
is active and inactive. The parameters used to
generate these traces are the same as for Fig. 2.
We also set 	�F	2=20 dB and �=0.5.
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converse of the laser under quadrature phase �or equivalently
frequency� stabilization. Thus we conclude that an intensity
noise-eater can be used to suppress that part of the quadra-
ture phase noise of a laser arising from the intensity noise of
the pump. This has practical consequences in that an inten-
sity noise-eater could be used to suppress the quadrature
phase noise of a laser to levels at or near the STL in situa-
tions where the cavity length fluctuations of the laser are
relatively small �see �16� and the top row of the first column
of Table I�. Unlike a dedicated frequency stabilization loop,
however, an intensity noise-eater could not suppress the
phase noise of a laser below the STL and intensity noise-
eaters are usually ac-coupled thereby rendering them ineffec-
tive as stand-alone frequency locking systems.

V. CONCLUSION

We have extended a previously published linearized quan-
tum mechanical theory of solid-state lasers �7� to include the
coupling between the quadrature phase noise of a laser and
the amplitude noise of its pump. The coupling is mediated by
thermally induced fluctuations in the optical path length of
the laser crystal. We have applied the extended model to an
investigation of the limits to simultaneous quadrature ampli-
tude and phase stabilization of a laser under closed loop
feedback to the power of the laser pump source.

The ultimate noise limit of a feedback loop is set by the
vacuum noise introduced at the feedback beamsplitter and by
the noise floor of the detection system. In the case of a fre-
quency �or equivalently quadrature phase noise� stabilization
scheme, this noise floor is typically far below the Schawlow-
Townes limit for a free-running laser. In the case of an in-
tensity stabilization scheme, this noise floor approaches the
quantum noise limit, QNL.

In the case where the feedback loop acts on the amplitude
noise of the laser and drives the amplitude noise to the the-
oretical minimum set by the beamsplitter, the phase noise is
also reduced to a level that approaches the Schawlow-
Townes limit. In the case where the feedback loop acts on the
phase noise of the laser and drives the phase noise to the
theoretical minimum set by the beamsplitter, the amplitude
noise can approach or even fall below the quantum noise
limit. At higher frequencies where the dominant noise feature
is the resonant relaxation oscillation, and pump noise is only
one contributor to the noise spectrum, the noise cannot be
suppressed by a current locking scheme alone.
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