227 research outputs found

    Quiet Sun coronal heating: analyzing large scale magnetic structures driven by different small-scale uniform sources

    Get PDF
    Recent measurements of quiet Sun heating events by Krucker and Benz (1998) give strong support to Parker's (1988) hypothesis that small scale dissipative events make the main contribution to the quiet heating. Moreover, combining their observations with the analysis by Priest et al. (2000), it can be concluded that the sources driving these dissipative events are also small scale sources, typically of the order of (or smaller than) 2000 km and the resolution of modern instruments. Thus arises the question of how these small scale events participate into the larger scale observable phenomena, and how the information about small scales can be extracted from observations. This problem is treated in the framework of a simple phenomenological model introduced in Krasnoselskikh et al. (2001), which allows to switch between various small scale sources and dissipative processes. The large scale structure of the magnetic field is studied by means of Singular Value Decomposition (SVD) and a derived entropy, techniques which are readily applicable to experimental data.Comment: 9 pages, 9 figure

    The effect of flares on total solar irradiance

    Full text link
    Flares are powerful energy releases occurring in stellar atmospheres. Solar flares, the most intense energy bursts in the solar system, are however hardly noticeable in the total solar luminosity. Consequently, the total amount of energy they radiate 1) remains largely unknown and 2) has been overlooked as a potential contributor to variations in the Total Solar Irradiance (TSI), i.e. the total solar flux received at Earth. Here, we report on the detection of the flare signal in the TSI even for moderate flares. We find that the total energy radiated by flares exceeds the soft X-ray emission by two orders of magnitude, with an important contribution in the visible domain. These results have implications for the physics of flares and the variability of our star.Comment: accepted in Nature Physic

    Better Data for Modeling the Sun’s Influence on Climate

    Get PDF
    Several international initiatives are working to stitch together data describing solar forcing of Earth’s climate. Their objective is to improve understanding of climate response to solar variability..

    The Influence of Solar Flares on the Lower Solar Atmosphere: Evidence from the Na D Absorption Line Measured by GOLF/SOHO

    Full text link
    Solar flares presumably have an impact on the deepest layers of the solar atmosphere and yet the observational evidence for such an impact is scarce. Using ten years of measurements of the Na D1_{1} and Na D2_2 Fraunhofer lines, measured by GOLF onboard SOHO, we show that this photospheric line is indeed affected by flares. The effect of individual flares is hidden by solar oscillations, but a statistical analysis based on conditional averaging reveals a clear signature. Although GOLF can only probe one single wavelength at a time, we show that both wings of the Na line can nevertheless be compared. The varying line asymmetry can be interpreted as an upward plasma motion from the lower solar atmosphere during the peak of the flare, followed by a downward motion.Comment: 13 pages, 7 figure

    Towards the definition of a solar forcing dataset for CMIP7

    Get PDF
    The solar forcing prepared for Phase 6 of the Coupled Model Intercomparison Project (CMIP6) has been used extensively in climate model experiments and has been tested in various intercomparison studies. Recently, an International Space Science Institute (ISSI) working group has been established to revisit the solar forcing recommendations, based on the lessons learned from CMIP6, and to assess new datasets that have become available, in order to define a road map for building a revised and extended historical solar forcing dataset for the upcoming Phase 7 of CMIP. This paper identifies the possible improvements required and outlines a strategy to address them in the planned new solar forcing dataset. Proposed major changes include the adoption of the new Total and Spectral Solar Irradiance Sensor (TSIS-1) solar reference spectrum for solar spectral irradiance and an improved description of top-of-the-atmosphere energetic electron fluxes, as well as their reconstruction back to 1850 by means of geomagnetic proxy data. In addition, there is an urgent need to consider the proposed updates in the ozone forcing dataset in order to ensure a self-consistent solar forcing in coupled models without interactive chemistry. Regarding future solar forcing, we propose consideration of stochastic ensemble forcing scenarios, ideally in concert with other natural forcings, in order to allow for realistic projections of natural forcing uncertainties.</p

    Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe

    Get PDF
    Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study this statistical correlation closer to the corona. As a first step, we analyze the separate correlation properties of the EPs measured by the Integrated Science Investigation of the Sun (IS⊙IS) instruments during the first solar encounter. The distribution of time intervals between a specific type of event, i.e., the waiting time, can indicate the nature of the underlying process. We find that the IS⊙IS observations show a power-law distribution of waiting times, indicating a correlated (non-Poisson) distribution. Analysis of low-energy (~15 – 200 keV/nuc) IS⊙IS data suggests that the results are consistent with the 1 au studies, although we find hints of some unexpected behavior. A more complete understanding of these statistical distributions will provide valuable insights into the origin and propagation of solar EPs, a picture that should become clear with future PSP orbits
    • …
    corecore