285 research outputs found
Global Ethics and Nanotechnology: A Comparison of the Nanoethics Environments of the EU and China
The following article offers a brief overview of current nanotechnology policy, regulation and ethics in Europe and The People’s Republic of China with the intent of noting (dis)similarities in approach, before focusing on the involvement of the public in science and technology policy (i.e. participatory Technology Assessment). The conclusions of this article are, that (a) in terms of nanosafety as expressed through policy and regulation, China PR and the EU have similar approaches towards, and concerns about, nanotoxicity—the official debate on benefits and risks is not markedly different in the two regions; (b) that there is a similar economic drive behind both regions’ approach to nanodevelopment, the difference being the degree of public concern admitted; and (c) participation in decision-making is fundamentally different in the two regions. Thus in China PR, the focus is on the responsibility of the scientist; in the EU, it is about government accountability to the public. The formulation of a Code of Conduct for scientists in both regions (China PR’s predicted for 2012) reveals both similarity and difference in approach to nanotechnology development. This may change, since individual responsibility alone cannot guide S&T development, and as public participation is increasingly seen globally as integral to governmental decision-making
Autonomous Coordination of Science Observations Using Multiple Spacecraft
This software provides capabilities for autonomous cross-cueing and coordinated observations between multiple orbital and landed assets. Previous work has been done in re-tasking a single Earth orbiter or a Mars rover in response to that craft detecting a science event. This work enables multiple spacecraft to communicate (over a network designed for deep-space communications) and autonomously coordinate the characterization of such a science event. This work investigates a new paradigm of space science campaigns where opportunistic science observations are autonomously coordinated among multiple spacecraft. In this paradigm, opportunistic science detections can be cued by multiple assets where a second asset is requested to take additional observations characterizing the identified surface feature or event. To support this new paradigm, an autonomous science system for multiple spacecraft assets was integrated with the Interplanetary Network DTN (Delay Tolerant Network) to provide communication between spacecraft assets. This technology enables new mission concepts that are not feasible with current technology. The ability to rapidly coordinate activities across spacecraft without requiring ground in the loop enables rapid reaction to dynamic events across platforms, such as a survey instrument followed by a targeted high resolution instrument, as well as regular simultaneous observations
Bigger, Faster, Better? Rhetorics and Practices of Large-Scale Research in Contemporary Bioscience
publication-status: Publishedtypes: ArticleEditorial for Special Issu
Timing of Case‐Based Discussions and Educational Outcomes for Dental Students
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153714/1/jddjde018056.pd
Better writing in scientific publications builds reader confidence and understanding
Scientific publications are the building blocks of discovery and collaboration, but their impact is limited by the style in which they are traditionally written. Recently, many authors have called for a switch to an engaging, accessible writing style. Here, we experimentally test how readers respond to such a style. We hypothesized that scientific abstracts written in a more accessible style would improve readers’ reported readability and confidence as well as their understanding, assessed using multiple-choice questions on the content. We created a series of scientific abstracts, corresponding to real publications on three scientific topics at four levels of difficulty – varying from the difficult, traditional style to an engaging, accessible style. We gave these abstracts to a team of readers consisting of 170 third-year undergraduate students. Then, we posed questions to measure the readers’ readability, confidence, and understanding with the content. The scientific abstracts written in a more accessible style resulted in higher readability, understanding, and confidence. These findings demonstrate that rethinking the way we communicate our science may empower a more collaborative and diverse industry.Benjamin S. Freeling, Zoë A. Doubleday, Matthew J. Dry, Carolyn Semmler and Sean D. Connel
The duality of ocean acidification as a resource and a stressor
Ecologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO2-driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts
Conceptualizing ecosystem tipping points within a physiological framework
published_or_final_versio
Pet or pest? Stable isotope methods for determining the provenance of an invasive alien species
The illegal pet trade facilitates the global dispersal of invasive alien species (IAS), providing opportunities for new pests to establish in novel recipient environments. Despite the increasing threat of IAS to the environment and economy, biosecurity efforts often lack suitable, scientifically-based methods to make effective management decisions, such as identifying an established IAS population from a single incursion event. We present a proof-of-concept for a new application of a stable isotope technique to identify wild and captive histories of an invasive pet species. Twelve red-eared slider turtles (Trachemys scripta elegans) from historic Australian incursions with putative wild, captive and unknown origins were analysed to: (1) present best-practice methods for stable isotope sampling of T. s. elegans incursions; (2) effectively discriminate between wild and captive groups using stable isotope ratios; and (3) present a framework to expand the methodology for use on other IAS species. A sampling method was developed to obtain carbon (δ13C) and nitrogen (δ15N) stable isotope ratios from the keratin layer of the carapace (shells), which are predominantly influenced by dietary material and trophic level respectively. Both δ13C and δ15N exhibited the potential to distinguish between the wild and captive origins of the samples. Power simulations demonstrated that isotope ratios were consistent across the carapace and a minimum of eight individuals were required to effectively discriminate wild and captive groups, reducing overall sampling costs. Statistical classification effectively separated captive and wild groups by δ15N (captive: δ15N‰ ≥ 9.7‰, minimum of 96% accuracy). This study outlines a practical and accessible method for detecting IAS incursions, to potentially provide biosecurity staff and decision-makers with the tools to quickly identify and manage future IAS incursions.Katherine G.W. Hill, Kristine E. Nielson, Jonathan J. Tyler, Francesca A. McInerney, Zoe A. Doubleday, Greta J. Frankham, Rebecca N. Johnson, Bronwyn M. Gillanders, Steven Delean, Phillip Casse
Sodium channel Nav1.8 immunoreactivity in painful human dental pulp.
Background: The tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 (SNS1/PN3) is expressed by nociceptors and may play a role in pain states. Methods: Using specific antibodies for immunohistochemistry, we studied Nav1.8 – immunoreactivity in human dental pulp in relation to the neuronal marker neurofilament. Human tooth pulp was extracted from teeth harvested from a total of twenty-two patients (fourteen without dental pain, eight patients with dental pain). Results: Fibres immunoreactive for Nav1.8, were significantly increased on image analysis in the painful group: median (range) Nav1.8 to Neurofilament % area ratio, non-painful 0.059 (0.006–0.24), painful 0.265 (0.13–0.5), P = 0.0019. Conclusion: Nav1.8 sodium channels may thus represent a therapeutic target in trigeminal nerve pain states
Considerations on the taxonomy of the genus Arhuaco Adams and Bernard 1977, and its relationships with the genus Pronophila Doubleday [1849] (Nymphalidae, Satyrinae)
- …
