8,722 research outputs found
Finite-energy solutions for compressible two-fluid Stokes system
We prove existence of global in time weak solutions to a compressible
two-fluid Stokes system with a single velocity field and algebraic closure for
the pressure law. The constitutive relation involves densities of both fluids
through an implicit function. The system appears to be outside the class of
problems that can be treated using the classical Lions-Feireisl approach.
Adapting the novel compactness tool developed by the first author and P.-E.
Jabin in the mono-fluid compressible Navier-Stokes setting, we first prove the
weak sequential stability of solutions. Next, we construct weak solutions via
unconventional approximation using the Lagrangian formulation, truncations and
stability result of trajectories for rough velocity fields.Comment: 34 page
Celebrating the Physics in Geophysics
As 2005, the International Year of Physics, comes to an end, two physicists
working primarily in geophysical research reflect on how geophysics is not an
applied physics. Although geophysics has certainly benefited from progress in
physics and sometimes emulated the reductionist program of mainstream physics,
it has also educated the physics community about some of the generic behaviors
of strongly nonlinear systems. Dramatic examples are the insights we have
gained into the ``emergent'' phenomena of chaos, cascading instabilities,
turbulence, self-organization, fractal structure, power-law variability,
anomalous scaling, threshold dynamics, creep, fracture, and so on. In all of
these examples, relatively simple models have been able to explain the
recurring features of apparently very complex signals and fields. It appears
that the future of the intricate relation between physics and geophysics will
be as exciting as its past has been characterized by a mutual fascination.
Physics departments in our universities should capitalize on this trend to
attract and retain young talent motivated to address problems that really
matter for the future of the planet. A pressing topic with huge impact on
populations and that is challenging enough for both physics and geophysics
communities to work together like never before is the understanding and
prediction of extreme events.Comment: 6 pages, final version to appear in EOS-AGU Transactions in November
200
Deploying elastic routing capability in an SDN/NFV-enabled environment
SDN and NFV are two paradigms that introduce unseen flexibility in telecom networks. Where previously telecom services were provided by dedicated hardware and associated (vendor-specific) protocols, SDN enables to control telecom networks through specialized software running on controllers. NFV enables highly optimized packet-processing network functions to run on generic/multi-purpose hardware such as x86 servers. Although the possibilities of SDN and NFV are well-known, concrete control and orchestration architectures are still under design and few prototype validations are available. In this demo we demonstrate the dynamic up-and downscaling of an elastic router supporting NFV-based network management, for example needed in a VPN service. The framework which enables this elasticity is the UNIFY ESCAPE environment, which is a PoC following an ETSI NFV MANO-conform architecture. This demo is one of the first to demonstrate a fully closed control loop for scaling NFs in an SDN/NFV control and orchestration architecture
Fire frequency and landscape management in the northwestern Pyrenean piedmont, France, since the early Neolithic (8000 cal. BP)
International audienceBoth quantitative reconstruction of fire frequency from charcoal counts and pollen analysis were undertaken on a 312 cm sediment core from Gabarn peat bog. An 8000 yr cal. BP palaeofire record and vegetation history were established on the basis of nine 14C (AMS) dates. As anthropogenic Inferred Fire Frequency (IFF) has seldom been studied, we test and discuss two different methods of frequency calculation. Our results shows a clear Holocene bipartition at c. 3500–4000 cal. BP characterized by a three times decrease in Mean Fire Interval (MFI): from 7000 to 4000 cal. BP, MFI = 530 yr; from 4000 to 400 cal. BP, MFI = 160 yr. In an Atlantic vegetation context, we hypothesize this fire regime with such episode frequency to be mainly controlled by human activities. This hypothesis is supported by comparisons with other European quantified palaeofireregimes (Swiss Alps, northern Italy) whether they are controlled by climate, man or both. Taking into account the pollen record, we interpret the Gabarn palaeofire record links with human pressure and land use. Our results suggest that the relationship between fire frequency and human pressure is not always linear. Fire frequency could also reflect land-use shifts and changing use of fire within agro-pastoral activitie
Mise en evidence d'un effet inhibiteur spécifique des racines de Framiré (Terminalia ivorensis) sur la croissance de jeunes plants de Framirés et de Frakés (Terminalia superba)
The various manifestations of collisionless dissipation in wave propagation
The propagation of an electrostatic wave packet inside a collisionless and
initially Maxwellian plasma is always dissipative because of the irreversible
acceleration of the electrons by the wave. Then, in the linear regime, the wave
packet is Landau damped, so that in the reference frame moving at the group
velocity, the wave amplitude decays exponentially with time. In the nonlinear
regime, once phase mixing has occurred and when the electron motion is nearly
adiabatic, the damping rate is strongly reduced compared to the Landau one, so
that the wave amplitude remains nearly constant along the characteristics. Yet,
we show here that the electrons are still globally accelerated by the wave
packet, and, in one dimension, this leads to a non local amplitude dependence
of the group velocity. As a result, a freely propagating wave packet would
shrink, and, therefore, so would its total energy. In more than one dimension,
not only does the magnitude of the group velocity nonlinearly vary, but also
its direction. In the weakly nonlinear regime, when the collisionless damping
rate is still significant compared to its linear value, this leads to an
effective defocussing effect which we quantify, and which we compare to the
self-focussing induced by wave front bowing.Comment: 23 pages, 6 figure
Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder
The failure probabilities or the strength distributions of heterogeneous 1D
systems with continuous local strength distribution and local load sharing have
been studied using a simple, exact, recursive method. The fracture behavior
depends on the local bond-strength distribution, the system size, and the
applied stress, and crossovers occur as system size or stress changes. In the
brittle region, systems with continuous disorders have a failure probability of
the modified-Gumbel form, similar to that for systems with percolation
disorder. The modified-Gumbel form is of special significance in weak-stress
situations. This new recursive method has also been generalized to calculate
exactly the failure probabilities under various boundary conditions, thereby
illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure
- …
