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GMPLS: THE PROMISE OF THE
NEXT-GENERATION OPTICAL CONTROL PLANE

INTRODUCTION

Generalized multiprotocol label switching
(GMPLS) will enable unified traffic engineering
(TE) for multilayer networks; that is, the same
set of tools and the same paradigms are used for
TE on all network layers. Current practice
among incumbent operators is mostly to perform
TE and network engineering (NE) centralized
and offline. The activities are performed per net-
work technology, independent of similar activi-
ties on other layers. The initial network resource
provisioning and service configuration is derived
from a sophisticated network planning and opti-
mization process.

Network configuration, topology, and
resource status are available in a database that
is continuously updated and used for service
provisioning. As services are being set up and

torn down, there is a risk of resources being
fragmented. To alleviate this, activities to free
up resources are necessary and need to be
undertaken carefully in order to avoid service
disruption.

One drawback of the centralized approach
is that it is much slower than actions taken by
a control plane. The management system must
access each node that participates in a path,
and reserve resources and configure connectiv-
ity. Distributed control plane functions allow
the automation of these processes with
reduced delay and increased scalability. The
dynamically switched network is an important
part of the carriers’ vision of future network-
ing since it gives them a way to decrease costs
and improve revenue.

The first stage of deployment has been under
way for some time in networks with packet
switch capable (PSC) devices only. We also see
two other steps being taken, but in different
directions. One step involves deploying networks
with multiple switching capabilities, for example,
PSC and lambda switch capable (LSC), each
controlled by a control plane of its own. The
other is deploying networks with multiple switch-
ing capabilities and one common control plane.
Multiple switching capabilities could be present
in a single node, or there could be just one
switching capability per node.

Packet switching networks and circuit switch-
ing networks are today operated over the same
physical network infrastructure (e.g., wave-
lengths). Frequently the transmission protocol
stacks are disparate; say, synchronous optical
network/synchronous digital hierarchy (SONET/
SDH) or Ethernet. This creates unique opportu-
nities and challenges for novel control plane and
TE enhancements in network architectures with
switching on multiple layers. One objective is
migration from per layer to an integrated mode
of operation. A common control plane instance
replaces the separate control plane instances per
data plane switching layer. The information
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ABSTRACT

In recent years, significant work has been com-
pleted on traffic engineering enhancements to
the generalized multiprotocol label switching
protocol suite [1–3]. As a next step, reproducing
the current trend of switching layers’ integration
happening in the data plane, network control is
foreseen to go beyond the traditional per layer
approach and tend toward an integrated model
[4, 5]. In these multilayer environments, a single
GMPLS control plane drives various distinct
switching layers at the same time and as a coher-
ent whole, taking benefit from the “common”
property of GMPLS. Beyond this application of
supporting network control across different tech-
nologies, in this article we catalog the unified
traffic engineering paradigms, discuss their
applicability, and present their enforcement
techniques. Furthermore, we show that the com-
mon GMPLS concept has the advantage of low
operational complexity, and enables unified TE
capabilities such as efficient network resource
usage and rapid service provisioning.

Multilayer Traffic Engineering for
GMPLS-Enabled Networks
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databases created by the common control plane
are also used for unified TE.

GMPLS is a way to integrate the network
control plane and central network management
tasks. The goal is to introduce more dynamic TE
functions based on efficient heuristics and man-
aged TE policies so that resource management
and policies to be applied can be harmonized in
a scalable way for all network layers. One area
where the benefits of this approach are obvious
is in coordination of recovery actions between
different layers; this is hardly possible in non-
GMPLS networks, where the network layers per-
form recovery actions separately. This article is
limited in scope and only covers the area con-
trolled by one GMPLS control plane instance,
for example, one autonomous system (AS). The
global view of the status in the whole network
area and its related TE information from differ-
ent switching layers leads to more efficient
resource utilization and network operation.

Different routes, depending on starting
points, may be used to achieve this goal. Incum-
bent operators with several networking technolo-
gies might start by introducing separate control
planes per layer. Green field operators with a
simpler protocol may choose to go for the uni-
fied model directly.

The rest of the article is organized as follows.
In the next section we present a brief outline of
fundamental TE paradigms. Next, we describe
the strategy we use to improve the efficiency and
robustness of the unified TE features of a
GMPLS control plane for multilayer network
architectures. Last, we present TE enforcement
techniques by means of policy-based manage-
ment (PBM) mechanisms.

TRAFFIC ENGINEERING CONCEPTS
This section gives an overview of multilayer TE
terms and concepts relevant for the discussion in
this article.

MULTILAYER ENVIRONMENTS
Networks are often partitioned into different
domains (e.g., an AS). In a multilayer environ-
ment such a network partition will have equip-
ment with switching capabilities on multiple
layers. Label switching routers (LSRs) in multi-
layer networks may have different sets of inter-
face switching capabilities (ISC). The example
below and Fig. 1 show a two-layer network, with
switching capabilities on the layers called layer-
(n) and Layer-(n + 1). An LSR could be:
• Layer-(n) switch capable

• Layer-(n + 1) switch capable
• Both layer-(n) and layer-(n + 1) switch

capable
In general, there is a mixture of the three

cases, as shown in Fig. 1.
GMPLS control planes in multilayer net-

works controlled by a common GMPLS control
plane are “unified” if the LSRs are either layer-
(n) or layer-(n + 1) switch capable and “inte-
grated” if all LSRs are both layer-(n) and
layer-(n + 1) switch capable. [1].

TRAFFIC ENGINEERING AND
NETWORK ENGINEERING

Network engineering deals, for example, with
design, modeling, and planning of network
resources and capacity (i.e., defining the
resources needed). TE deals, for example, with
efficient and reliable network operations while
simultaneously optimizing network resource uti-
lization and traffic performance in operational
networks (i.e., allocating resources where they
are needed).

There are several TE approaches that deal
with traffic demand variations, traffic perfor-
mance, resource optimization, and failure sce-
narios in a network. TE has become an
indispensable function in many large networks
because of the high cost of network resources,
and the commercial and competitive nature of
modern networking. To achieve the TE goals
these operations should be performed without
any loss of the quality of service (QoS) connec-
tion requirements. The optimization aspects of
TE can be achieved through capacity manage-
ment and traffic management, while traffic per-
formance can be improved through performance
monitoring and a combination of analytical and
empirical methods. Thus, the control dimension
of TE responds at multiple levels of temporal
resolution to network events.

One way to categorize TE is in time-depen-
dent, state-dependent, and event-dependent meth-
ods. Time-dependent TE algorithms are applicable
to predictable traffic variations, such as daytime
peak hours or a shift from business to residential
traffic in the evening. In those cases the QoS
requirements and traffic matrix may be roughly
estimated in advance. State-dependent TE meth-
ods use the current state of the network to adapt
to variations in actual traffic. Constraint-based
routing is one example of state-dependent TE
operations. Event-dependent TE methods are
adaptive and distributed in nature. One example is
the responses to link and node failures.

nnnn Figure 1. The general case of a network with switching capabilities on two layers.
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TE and NE can be both proactive and reac-
tive. In the first case the network tries to main-
tain an efficient state. In the latter case actions
are only taken when certain inefficiency condi-
tions are detected (e.g., exceeding a threshold).

In TE these actions may be performed on
existing connections or apply to new connection
requests. In the former case, connections may be
temporarily interrupted or QoS degraded. In the
latter case, it may take a long time before an
undesirable network state is resolved and the
connection is established. In an operational net-
work with strong TE requirements both methods
need to be used.

To coordinate the TE capabilities of each
layer in a multilayer network, a key factor is that
the NE is aware of the multilayer characteristics.
Working on longer time scales, using knowledge
of traffic trends and variations, NE is capable of
computing target network states. TE, working on
shorter time scales, may use theses pre-comput-
ed network states to achieve a flexible and scal-
able resource and traffic optimization.

GROOMING TECHNIQUES
Deployment of multilayer networks brings new
challenges. Switching capabilities on multiple
layers makes it possible to control, operate, and
traffic engineer a network in new ways. TE is no
longer limited to tackling just the traditional
path computation process and setting up the
path the traffic flow will follow. Routing deci-
sions must be made considering all dynamic lay-
ers involved in the transport of the flow,
including at what points cross-layer operations
should be performed. This goal is greatly facili-
tated by the visibility of all layers and the TE
information related to these layers.

Directly linked to the transport of traffic
flows across multiple layers is the grooming
paradigm. To aggregate multiple traffic streams,
sharing a common path, into one or more label
switched paths (LSPs), and later separate them
is referred to as traffic grooming. The set of con-
nections on a given layer dynamically established

for grooming purposes serves as an abstract or
virtual topology (VT) for the upper layer. This
type of grooming we consider adaptive grooming.
Adaptive grooming refers to the case where the
upper and lower layers are controlled by a single
control plane instance; a new demand at any
layer has influence on other layers as well (e.g.,
the routing decision has an effect on multiple
layers).

Grooming addresses the TE issue of finding a
trade-off between the lower cost of switching on
a lower layer and the better resource utilization
in switching on higher layers. In an integrated
layer 2 over layer 1 network, with network ele-
ments that provide layer 2 and layer 1 switching,
there are two extreme cases, and a trade-off
needs to be found:
• The VT matches the physical topology (Fig.

2a).
• The VT interconnects the layer 2 switches

in a full mesh (Fig. 2b).
The drawback in the first case is a relatively

high number of layer 2 hops, because fiber con-
nectivity generally is a scarce resource. The
drawback in the second case is that layer 1
resources will be wasted.

RESILIENCE CONSIDERATIONS
While TE optimizes the use of resources under
normal operation, resilience mechanisms such as
protection, restoration, reroute, and recovery are
TE mechanisms that are invoked in case of sin-
gle or multiple failures. These mechanisms are
also used to switch traffic back to resources
when they come back up after being repaired.

The resilience techniques defined for single-
layer networks can be used for multilayer net-
works as well [6, 7]. Resilience for multilayer
networks raises issues regarding coordination
between layers during recovery operations. One
of the most critical issues is to decide which
recovery action needs to be taken on which
layer. Following is a nonexhaustive list of the
parameters that play a role in recovery decisions:
• Mode (protection or restoration)

nnnn Figure 2. Virtual topologies: a) one-hop transport LSPs; b) full mess of transport LSPs; c) optimized
mesh of transport LSPs.
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• Scope (end-to-end or segment-based)
• Scheme (1+1, shared mesh, etc.)
• Risk (Shared Risk Link Group, SRLG,

diverse)
• Loss of connectivity (from loss of light to

loss of routing adjacency)
Each layer has the capability to detect fail-

ures within that layer and sometimes also trigger
resilience actions. One critical aspect of
resilience actions to be taken into account in a
multilayer network is that they have to be care-
fully coordinated between layers.

APPLICABILITY TO
GMPLS ENVIRONMENTS

GMPLS KEY TE BUILDING BLOCKS
In this section we introduce the key GMPLS TE
building blocks.

TE Link — A TE link is a link between two adja-
cent LSRs that has a set of associated TE capa-
bilities. A TE link can consists of a number of
bundled component TE Links, which can them-
selves recursively comprise bundled TE Links.
Free and allocated link capacities and TE
attributes of the link components are represent-
ed in an aggregated form.

Link Bundling — This is a construct that makes
it possible to group individual TE links together
and shows the available resources in an aggre-
gated way. Link bundling improves the routing
scalability by reducing the amount of informa-
tion to be processed by the control plane. With
link bundling a one-to-one association between a
regular routing adjacency and a TE link is no
longer required. Hence, the number of routing
adjacencies in the network can be kept propor-
tional to the number of control plane adjacen-
cies and is not related to the actual number of
data plane links.

Forwarding Adjacency — TE links have been
extended to nonadjacent devices by introducing
the forwarding adjacency (FA) concept. A
GMPLS-capable node can advertise an LSP as a
TE link into a single routing domain. Such a link
is referred to as an FA, and the corresponding
LSP as an FA-LSP. The routing protocol (Open
Shortest Path first with TE, OSPF-TE, or Inter-
mediate System to Intermediate System with TE,
ISIS-TE) floods the link state information about
FAs just as it floods the information about any
other TE link. This allows other nodes to use
FAs as any other TE link for path computation
purposes. The use of FAs provides a mechanism
for improving bandwidth utilization and enables
aggregating forwarding states. FAs allow the cre-
ation of an LSP hierarchy and thus improve the
scalability of GMPLS-capable control planes.

The TE extensions of the routing protocol
such as OSPF-TE use so-called sub-type length
values (TLVs) for specifying and distributing
information of the TE links. In a multilayer envi-
ronment important TE properties of a TE link
are defined by one or more switching capabilities
associated with it. GMPLS defines control plane
capabilities for packet (PSC), layer 2 (L2SC),

time-division multiplexing (TDM-SC), lambda
(LSC), and fiber (FSC) switching capabilities.
The related TE attributes of the switching capa-
bilities are defined, for example, in [3].

Routing and signaling protocols may use the
TE attributes to perform constraint-based path
computation, optimizing the path on other con-
straints than least cost (e.g., resource consump-
tion or available bandwidth).

MULTILAYER ROUTING AND SIGNALING
This section discusses signaling and routing
issues and two methods of route computation in
a multilayer network.

There are several possible methods for route
computation in multilayer environments, and the
methods could also be combined.

A full view of the state of all layers in the
network and the TE information makes coordi-
nation between layers possible. The coordination
leads to optimal routing, connection establish-
ment, and signaling decisions. It also implies that
the control plane needs to deal with an amount
of information substantially larger than that for
a comparable IP network. One consequence is
that it will be more resource- and time-consum-
ing to run routing algorithms. There are basical-
ly two ways to cope with this, a layered routing
approach and a multilayer approach.

In the first mode, path computation is per-
formed on a per layer basis, and the lower-layer
information is abstracted in a VT the computing
layer can use. In the second mode the knowl-
edge of all layers is used to compute routes.

In the first mode a VT is created by the com-
mon control plane and consists of lower-layer
FA-LSPs between the upper-layer nodes. The
control plane uses the FA-LSPs to establish
upper-layer routes.

As an example, assume that FAs instantiated
by LSC LSPs provide a virtual network topology
to a PSC layer. This topology of FAs provides all
the TE information and enables TE routing at
the PSC layer. An established PSC LSP is com-
posed of links connected to equipment capable
of switching this type of LSP only; that is, the
LSP is routed on a single layer.

TE also plays an important role in multilayer
signaling. GMPLS signaling (and routing) proto-
cols adapt the VT to traffic demands (i.e., FA-
LSPs could be set up or taken down as needed).
When an LSP crosses the boundary from an
upper to a lower layer, it may be nested in or
stitched to a lower-layer FA-LSP. The decisions
to establish or take down an FA-LSP could
make use of thresholds enforced via PBM (see
below) to avoid link state instability.

The second method takes advantage of hav-
ing a complete view of all layers from a topologi-
cal and TE resource standpoint. The route
resulting from path computation will be multi-
layer in nature (i.e., it traverses links of different
switching capabilities). This enables a path to be
set up end to end across the different layers,
where each successive LSP participates in the
transport of the traffic flows.

Consider a PSC and LSC network transport-
ing IP flows; an edge node could decide the
route to traverse [A, B, C] at the PSC layer, then
[C, D, E] at the LSC layer, and finally, [E, F, G]
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at the PSC layer. For RSVP-TE signaling the
identifiers of the links (used in the example) are
more relevant than the nodes themselves. More
sophisticated schemes may be envisaged (given
more advanced node capabilities), such as impos-
ing a cross-layer point between two routes in the
LSC layer. This example shows the tight rela-
tionship between multilayer routing and multi-
layer signaling. By computing an explicit route
across the different layers, the edge node may
implicitly reques the triggering of LSP establish-
ment in several layers in addition to specifying
their explicit routes.

In the context of establishing multilayer
LSPs between nodes with multiple ISCs or
operating according to the integrated model
raises a specific issue. To avoid unnecessary
resource partitioning, nodes with multiple ISCs
may advertise a single TE link with these multi-
ple ISCs [3]. From that perspective the selec-
tion of a link in the route computation process
needs to explicitly select a specific ISC among
those advertised. Existing signaling protocols
could be extended to disambiguate the indica-
tion of the ISC on multi-ISC links by defining a
new subobject to RSVP-TE.

Taking advantage of both the FA paradigm
and the global multilayer vision, a combination
of the above two methods is expected to be the
practical choice with regards to multilayer rout-
ing and signaling. Routing is dependent on the
network topology and associated link states.
Routing stability may be impaired by frequent
changes in the VT or the status of links in the
VT. Creation and deletion of LSPs may be trig-
gered by adjacent layers or through operational
actions to meet changes in traffic demand.

TE ATTRIBUTES AND INHERITANCE
The different TE attributes introduced above
are expected to play a role in the path compu-
tation process. Path computation typically
relies on running a shortest path algorithm
over a weighted graph. Certain of these TE
attributes could be used to construct a graph
satisfying the requirements of the connection
to establish. For example, TE links not having
enough bandwidth could be pruned from the
TE database and not appear in the graph.
Other TE attributes could be used to assign a
cost to the links of the graph. The TE metric,
or a combination of TE metric and other
attributes, could serve that purpose.

Currently the TE metric is defined on a TE
link basis. In multilayer networks some TE links
may have several switching capabilities. Howev-
er, different switching technologies may have dif-
ferent constraints. While for circuit switching
technologies the objective is most often to groom
traffic as much as possible to optimize resource
usage, in packet technologies load balancing is
sometimes preferred to keep congestion and
blocking probabilities low. When a single TE
link contains several switching capabilities, a sin-
gle TE metric cannot simultaneously tackle both
packet and circuit specifics. This suggests a more
flexible TE metric, allowing a TE metric per
ISC, facilitating layer-specific path computation.

As mentioned previously, FAs enable opti-
mization of preprovisioned or precomputed VTs

but also dynamic triggering of resources at vari-
ous ISCs. However, challenges arise from rout-
ing an advertisement of FA-LSPs as TE links.
FAs consist of an abstraction of the underlying
layer in which the FA-LSP has been established;
thus, an FA will summarize the TE attributes of
the spanned TE links.

The selection of a given FA link by the path
computation process has implications for both
the transported LSP and the layer in which the
FA-LSP is established. The summarization or
inheritance process should thus appropriately
reflect the lower-layer information of interest
to the upper layer. For example, from a con-
nectivity point of view two FAs are identical
(i.e., they interconnect two upper layer points).
However, one might be two hops and the other
six hops long in the underlying layer. The selec-
tion of one of these FAs and the potential
dynamic triggering of additional bandwidth will
have a clearly different impact on the transport
layer. In addition, different FAs might differ in
terms of delay and/or jitter for a packet layer.
The TE metric could be used to differentiate
these cases.

In multilayer networks the inheritance of pro-
tection and restoration related TE link attributes
must also be considered. However, applying sim-
ple attribute inheritance might not be sufficient to
distinguish different recovery schemes. It is impos-
sible to differentiate a 1:1 end-to-end protected
LSP advertised as a single FA together with its
backup LSP from a single FA-LSP routed over
links providing 1:1 protection. A link protection
type of 1:1 would be used for the two correspond-
ing TE link advertisements. An upper layer would
thus have no means to differentiate the two cases.
However, these two recovery schemes (end-to-
end and span) have major differences in terms of
recovery delay and robustness.

ENFORCING TE THROUGH
POLICY-BASED MANAGEMENT

A policy is a set of rules guiding the LSRs in
making their local TE decisions. The TE policies
are set by the operator and scope the degrees of
freedom of the LSRs, and are intended to tune
the overall network behavior according to the
operational goals. Without network-wide poli-
cies, there is the risk that TE decisions, for
example, on load balancing made locally by one
LSR may be inconsistent with decisions made by
other LSRs. The PBM empowers the operator
to coordinate centralized and distributed TE
processes.

TE policies guide both signaling and routing
in a GMPLS network. In Fig. 3 the management
abstraction and hardware abstraction layers hide
the internal implementation details of the
respective interfaces toward the network man-
agement and hardware. To name only a few,
examples of TE policies for routing are:
• Whether or not to advertise a given LSP as

a TE link, enabling the creation of VTs
• Criteria for bundling taking into account,

for example, SRLG information for facili-
tating risk disjoint path computation over
abstract topologies
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• Parameters involved in the setup of the
working and protection LSPs

• Stitching (dedicated path segments) and
nesting operations (shared path segments)
in case of loose hop

• Strategies for triggering LSP setup
• Parameters involved in the recovery pro-

cess, such as failure notification and revert-
ing recovery operations
The PBM enforces conditions on an inherent-

ly distributed and completely autonomous
GMPLS TE environment [8].

CONCLUSION
This article combines concepts from three areas of
research. First, we show that the unified TE
paradigm improves the accuracy of TE decisions in
the multilayer network. It widens the applicability
of well-known TE techniques to include different
switching technologies. It enables network resource
optimization across multiple network layers. Sec-
ond, the unified TE is based on an extensible
GMPLS protocol framework, and third, the PBM
can be used to improve the accuracy of the TE
operations through the use of operator policies.

Unified TE provides an alternative means for
operators who need to reduce complexity and
improve the operational and cost efficiency of
their multilayer networks.
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