26 research outputs found

    Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species.

    Get PDF
    Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production

    Genetic dissection of fruit quality traits in the octoploid cultivated strawberry highlights the role of homoeo-QTL in their control

    Get PDF
    Fruit quality traits are major breeding targets in the Rosaceae. Several of the major Rosaceae species are current or ancient polyploids. To dissect the inheritance of fruit quality traits in polyploid fleshy fruit species, we used a cultivated strawberry segregating population comprising a 213 full-sibling F1 progeny from a cross between the variety ‘Capitola’ and the genotype ‘CF1116’. We previously developed the most comprehensive strawberry linkage map, which displays seven homoeology groups (HG), including each four homoeology linkage groups (Genetics 179:2045–2060, 2008). The map was used to identify quantitative trait loci (QTL) for 19 fruit traits related to fruit development, texture, colour, anthocyanin, sugar and organic acid contents. Analyses were carried out over two or three successive years on field-grown plants. QTL were detected for all the analysed traits. Because strawberry is an octopolyploid species, QTL controlling a given trait and located at orthologous positions on different homoeologous linkage groups within one HG are considered as homoeo-QTL. We found that, for various traits, about one-fourth of QTL were putative homoeo-QTL and were localised on two linkage groups. Several homoeo-QTL could be detected the same year, suggesting that several copies of the gene underlying the QTL are functional. The detection of some other homoeo-QTL was year-dependent. Therefore, changes in allelic expression could take place in response to environmental changes. We believe that, in strawberry as in other polyploid fruit species, the mechanisms unravelled in the present study may play a crucial role in the variations of fruit quality

    Bioactive compounds in berries relevant to human health

    No full text
    Berries contain powerful antioxidants, potential allergens, and other bioactive compounds. Genetic and environmental factors affect production and storage of such compounds. For this reason breeding and biotechnological approaches are currently used to control or to increase the content of specific health-related compounds in fruits. This work reviews the main bioactive compounds determining the nutritional quality of berries, the major factors affecting their content and activity, and the genetic options currently available to achieve new genotypes able to provide, under controlled cultivation conditions, berries with the proper balance of bioactive compounds for improving consumer healt

    Bioactive compounds in berries relevant to human health.

    No full text

    Bioactivities of berries relevant to human health

    No full text
    Rewie

    Development, mapping and transferability of Fragaria EST-SSRs within the Rosodae supertribe

    No full text
    M. Rousseau-Gueutin, L. Richard, L. Le Dantec, H. Caron and B. Denoyes-Rotha

    The FveFT2 florigen/FveTFL1 antiflorigen balance is critical for the control of seasonal flowering in strawberry while FveFT3 modulates axillary meristem fate and yield

    No full text
    Plant architecture is central in determining crop yield. In the short-day species strawberry, a crop vegetatively propagated by daughter-plants produced by stolons, fruit yield is further dependent on the trade-off between sexual reproduction (fruits) and asexual reproduction (daughter-plants). Both are largely dependent on meristem identity, which establishes the development of branches, stolons and inflorescences. Floral initiation and plant architecture are modulated by the balance between two related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). We explored in woodland strawberry the role of the uncharacterised FveFT2 and FveFT3 genes and of the floral repressor FveTFL1 through gene expression analyses, grafting and genetic transformation (overexpression and gene editing). We demonstrate the unusual properties of these genes. FveFT2 is a nonphotoperiodic florigen permitting short-day (SD) flowering and FveTFL1 is the long-hypothesised long-day systemic antiflorigen that contributes, together with FveFT2, to the photoperiodic regulation of flowering. We additionally show that FveFT3 is not a florigen but promotes plant branching when overexpressed, that is likely to be through changing axillary meristem fate, therefore resulting in a 3.5-fold increase in fruit yield at the expense of stolons. We show that our findings can be translated into improvement of cultivated strawberry in which FveFT2 overexpression significantly accelerates flowering
    corecore