659 research outputs found

    Asymptotic Search for Ground States of SU(2) Matrix Theory

    Get PDF
    We introduce a complete set of gauge-invariant variables and a generalized Born-Oppenheimer formulation to search for normalizable zero-energy asymptotic solutions of the Schrodinger equation of SU(2) matrix theory. The asymptotic method gives only ground state candidates, which must be further tested for global stability. Our results include a set of such ground state candidates, including one state which is a singlet under spin(9).Comment: 51 page

    Solid immersion lens applications for nanophotonic devices

    Get PDF
    Solid immersion lens (SIL) microscopy combines the advantages of conventional microscopy with those of near-field techniques, and is being increasingly adopted across a diverse range of technologies and applications. A comprehensive overview of the state-of-the-art in this rapidly expanding subject is therefore increasingly relevant. Important benefits are enabled by SIL-focusing, including an improved lateral and axial spatial profiling resolution when a SIL is used in laser-scanning microscopy or excitation, and an improved collection efficiency when a SIL is used in a light-collection mode, for example in fluorescence micro-spectroscopy. These advantages arise from the increase in numerical aperture (NA) that is provided by a SIL. Other SIL-enhanced improvements, for example spherical-aberration-free sub-surface imaging, are a fundamental consequence of the aplanatic imaging condition that results from the spherical geometry of the SIL. Beginning with an introduction to the theory of SIL imaging, the unique properties of SILs are exposed to provide advantages in applications involving the interrogation of photonic and electronic nanostructures. Such applications range from the sub-surface examination of the complex three-dimensional microstructures fabricated in silicon integrated circuits, to quantum photoluminescence and transmission measurements in semiconductor quantum dot nanostructures

    Practising teaching using virtual classroom role plays

    Get PDF
    Practice in the role of the teacher is an essential part of teacher education, however professional experience placements are becoming increasingly difficult to find. Consequently, additional university-based teaching practice, such as classroom role play with student teacher peers is important. Classroom role plays can be effective but there are limits to the realism of the experience and such strategies are not feasible for students studying at a distance. This article reports on a study in which a classroom in the virtual world of Second Life was used to house role plays of student teachers in preparation for their first professional experience placement. Based on the results of this study it is concluded that teaching practice using a virtual classroom shows promise but there are a number of usability and other issues which need to be resolved before it will be viewed as an effective strategy by all student teachers

    Tangential slip noise of V-ribbed belts

    Get PDF

    Coulomb interactions in single, charged self-assembled quantum dots: radiative lifetime and recombination energy

    Full text link
    We present results on the charge dependence of the radiative recombination lifetime, Tau, and the emission energy of excitons confined to single self-assembled InGaAs quantum dots. There are significant dot-to-dot fluctuations in the lifetimes for a particular emission energy. To reach general conclusions, we present the statistical behavior by analyzing data recorded on a large number of individual quantum dots. Exciton charge is controlled with extremely high fidelity through an n-type field effect structure, providing access to the neutral exciton (X0), the biexciton (2X0) and the positively (X1+) and negatively (X1-) charged excitons. We find significant differences in the recombination lifetime of each exciton such that, on average, Tau(X1-) / Tau(X0) = 1.25, Tau(X1+) / Tau(X0) = 1.58 and Tau(2X0) / Tau(X0) = 0.65. We attribute the change in lifetime to significant changes in the single particle hole wave function on charging the dot, an effect more pronounced on charging X0 with a single hole than with a single electron. We verify this interpretation by recasting the experimental data on exciton energies in terms of Coulomb energies. We show directly that the electron-hole Coulomb energy is charge dependent, reducing in value by 5-10% in the presence of an additional electron, and that the electron-electron and hole-hole Coulomb energies are almost equal.Comment: 8 pages, 7 figures, submitted to Phys. Rev.

    Collisional properties of cold spin-polarized nitrogen gas: theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules

    Get PDF
    We report a combined experimental and theoretical study of collision-induced dipolar relaxation in a cold spin-polarized gas of atomic nitrogen (N). We use buffer gas cooling to create trapped samples of 14N and 15N atoms with densities 5+/-2 x 10^{12} cm-3 and measure their magnetic relaxation rates at milli-Kelvin temperatures. Rigorous quantum scattering calculations based on accurate ab initio interaction potentials for the 7Sigma_u electronic state of N2 demonstrate that dipolar relaxation in N + N collisions occurs at a slow rate of ~10^{-13} cm3/s over a wide range of temperatures (1 mK to 1 K) and magnetic fields (10 mT to 2 T). The calculated dipolar relaxation rates are insensitive to small variations of the interaction potential and to the magnitude of the spin-exchange interaction, enabling the accurate calibration of the measured N atom density. We find consistency between the calculated and experimentally determined rates. Our results suggest that N atoms are promising candidates for future experiments on sympathetic cooling of molecules.Comment: 48 pages, 17 figures, 3 table

    Ab initio determination of polarizabilities and van der Waals coefficients of Li atoms using the relativistic CCSD(T) method

    Full text link
    We report a new technique to determine the van der Waals coeffcients of lithium (Li) atoms based on the relativistic coupled-cluster theory. These quantities are determined using the imaginary parts of the scalar dipole and quadrupole polarizabilities, which are evaluated using the approach that we have proposed in [1]. Our procedure is fully ab initio, and avoids the sum-over-the-states method. We present the dipole and quadrupole polarizabilities of many of the low-lying excited states of Li. Also, the off-diagonal dipole and quadrupole polarizabilites between some of the low-lying states of Li are calculated.Comment: 8 pages, 4 figure
    • …
    corecore