3,810 research outputs found

    Evidence for entanglement at high temperatures in an engineered molecular magnet

    Full text link
    The molecular compound [Fe2_{2}(μ2\mu_{2}-oxo)(C3_{3}H4_{4}N2_{2})6_{6}(C2_{2}O4_{4})2_{2}] was designed and synthesized for the first time and its structure was determined using single-crystal X-ray diffraction. The magnetic susceptibility of this compound was measured from 2 to 300 K. The analysis of the susceptibility data using protocols developed for other spin singlet ground-state systems indicates that the quantum entanglement would remain at temperatures up to 732 K, significantly above the highest entanglement temperature reported to date. The large gap between the ground state and the first-excited state (282 K) suggests that the spin system may be somewhat immune to decohering mechanisms. Our measurements strongly suggest that molecular magnets are promising candidate platforms for quantum information processing

    Random graph states, maximal flow and Fuss-Catalan distributions

    Full text link
    For any graph consisting of kk vertices and mm edges we construct an ensemble of random pure quantum states which describe a system composed of 2m2m subsystems. Each edge of the graph represents a bi-partite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated to a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.Comment: 37 pages, 24 figure

    Entropy in general physical theories

    Get PDF
    Information plays an important role in our understanding of the physical world. We hence propose an entropic measure of information for any physical theory that admits systems, states and measurements. In the quantum and classical world, our measure reduces to the von Neumann and Shannon entropy respectively. It can even be used in a quantum or classical setting where we are only allowed to perform a limited set of operations. In a world that admits superstrong correlations in the form of non-local boxes, our measure can be used to analyze protocols such as superstrong random access encodings and the violation of `information causality'. However, we also show that in such a world no entropic measure can exhibit all properties we commonly accept in a quantum setting. For example, there exists no`reasonable' measure of conditional entropy that is subadditive. Finally, we prove a coding theorem for some theories that is analogous to the quantum and classical setting, providing us with an appealing operational interpretation.Comment: 20 pages, revtex, 7 figures, v2: Coding theorem revised, published versio

    Asteroseismology of the solar analogs 16 Cyg A & B from Kepler observations

    Get PDF
    The evolved solar-type stars 16 Cyg A & B have long been studied as solar analogs, yielding a glimpse into the future of our own Sun. The orbital period of the binary system is too long to provide meaningful dynamical constraints on the stellar properties, but asteroseismology can help because the stars are among the brightest in the Kepler field. We present an analysis of three months of nearly uninterrupted photometry of 16 Cyg A & B from the Kepler space telescope. We extract a total of 46 and 41 oscillation frequencies for the two components respectively, including a clear detection of octupole (l=3) modes in both stars. We derive the properties of each star independently using the Asteroseismic Modeling Portal, fitting the individual oscillation frequencies and other observational constraints simultaneously. We evaluate the systematic uncertainties from an ensemble of results generated by a variety of stellar evolution codes and fitting methods. The optimal models derived by fitting each component individually yield a common age (t=6.8+/-0.4 Gyr) and initial composition (Z_i=0.024+/-0.002, Y_i=0.25+/-0.01) within the uncertainties, as expected for the components of a binary system, bolstering our confidence in the reliability of asteroseismic techniques. The longer data sets that will ultimately become available will allow future studies of differential rotation, convection zone depths, and long-term changes due to stellar activity cycles.Comment: 6 pages, 2 figures, 2 tables, ApJ Letters (accepted

    Computational shelf-life dating : complex systems approaches to food quality and safety

    Get PDF
    Shelf-life is defined as the time that a product is acceptable and meets the consumers expectations regarding food quality. It is the result of the conjunction of all services in production, distribution, and consumption. Shelf-life dating is one of the most difficult tasks in food engineering. Market pressure has lead to the implementation of shelf-life by sensory analyses, which may not reflect the full quality spectra. Moreover, traditional methods for shelf-life dating and small-scale distribution chain tests cannot reproduce in a laboratory the real conditions of storage, distribution, and consumption on food quality. Today, food engineers are facing the challenges to monitor, diagnose, and control the quality and safety of food products. The advent of nanotechnology, multivariate sensors, information systems, and complex systems will revolutionize the way we manage, distribute, and consume foods. The informed consumer demands foods, under the legal standards, at low cost, high standards of nutritional, sensory, and health benefits. To accommodate the new paradigms, we herein present a critical review of shelf-life dating approaches with special emphasis in computational systems and future trends on complex systems methodologies applied to the prediction of food quality and safety.Fundo Europeu de Desenvolvimento Regional (FEDER) - Programa POS-ConhecimentoFundação para a Ciência e a Tecnologia (FCT) - SFRH/BPD/26133/2005, SFRH/ BPD/20735/200

    Overexpression of the Transcription Factor HAA1 to enhance Komagataella phaffii resistance to inhibitory compounds.

    Get PDF
    The use of renewable feedstocks, like lignocellulosic biomass, is growing rapidly in industrial biotechnology because of its usage in bioprocesses. This biomass originates, principally, from agroindustry residues and can be used to obtain substances such as xylonic acid. Unfortunately, one of the biggest obstacles for the usage of lignocellulosic biomass is the microorganism response to inhibitory compounds found in renewable biomasses after they are pre-treated using hydrolyses, such as acetic acid and lignin derived aromatic compounds. Those can inhibit or even completely block the cell’s metabolic activity

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis
    corecore