3,810 research outputs found
Evidence for entanglement at high temperatures in an engineered molecular magnet
The molecular compound
[Fe(-oxo)(CHN)(CO)]
was designed and synthesized for the first time and its structure was
determined using single-crystal X-ray diffraction. The magnetic susceptibility
of this compound was measured from 2 to 300 K. The analysis of the
susceptibility data using protocols developed for other spin singlet
ground-state systems indicates that the quantum entanglement would remain at
temperatures up to 732 K, significantly above the highest entanglement
temperature reported to date. The large gap between the ground state and the
first-excited state (282 K) suggests that the spin system may be somewhat
immune to decohering mechanisms. Our measurements strongly suggest that
molecular magnets are promising candidate platforms for quantum information
processing
Ampliação da diversidade de bactérias cultiváveis do solo e avaliação de isolados raros quanto à atividade contra fitopatógenos.
Random graph states, maximal flow and Fuss-Catalan distributions
For any graph consisting of vertices and edges we construct an
ensemble of random pure quantum states which describe a system composed of
subsystems. Each edge of the graph represents a bi-partite, maximally entangled
state. Each vertex represents a random unitary matrix generated according to
the Haar measure, which describes the coupling between subsystems. Dividing all
subsystems into two parts, one may study entanglement with respect to this
partition. A general technique to derive an expression for the average
entanglement entropy of random pure states associated to a given graph is
presented. Our technique relies on Weingarten calculus and flow problems. We
analyze statistical properties of spectra of such random density matrices and
show for which cases they are described by the free Poissonian
(Marchenko-Pastur) distribution. We derive a discrete family of generalized,
Fuss-Catalan distributions and explicitly construct graphs which lead to
ensembles of random states characterized by these novel distributions of
eigenvalues.Comment: 37 pages, 24 figure
Entropy in general physical theories
Information plays an important role in our understanding of the physical
world. We hence propose an entropic measure of information for any physical
theory that admits systems, states and measurements. In the quantum and
classical world, our measure reduces to the von Neumann and Shannon entropy
respectively. It can even be used in a quantum or classical setting where we
are only allowed to perform a limited set of operations. In a world that admits
superstrong correlations in the form of non-local boxes, our measure can be
used to analyze protocols such as superstrong random access encodings and the
violation of `information causality'. However, we also show that in such a
world no entropic measure can exhibit all properties we commonly accept in a
quantum setting. For example, there exists no`reasonable' measure of
conditional entropy that is subadditive. Finally, we prove a coding theorem for
some theories that is analogous to the quantum and classical setting, providing
us with an appealing operational interpretation.Comment: 20 pages, revtex, 7 figures, v2: Coding theorem revised, published
versio
Asteroseismology of the solar analogs 16 Cyg A & B from Kepler observations
The evolved solar-type stars 16 Cyg A & B have long been studied as solar
analogs, yielding a glimpse into the future of our own Sun. The orbital period
of the binary system is too long to provide meaningful dynamical constraints on
the stellar properties, but asteroseismology can help because the stars are
among the brightest in the Kepler field. We present an analysis of three months
of nearly uninterrupted photometry of 16 Cyg A & B from the Kepler space
telescope. We extract a total of 46 and 41 oscillation frequencies for the two
components respectively, including a clear detection of octupole (l=3) modes in
both stars. We derive the properties of each star independently using the
Asteroseismic Modeling Portal, fitting the individual oscillation frequencies
and other observational constraints simultaneously. We evaluate the systematic
uncertainties from an ensemble of results generated by a variety of stellar
evolution codes and fitting methods. The optimal models derived by fitting each
component individually yield a common age (t=6.8+/-0.4 Gyr) and initial
composition (Z_i=0.024+/-0.002, Y_i=0.25+/-0.01) within the uncertainties, as
expected for the components of a binary system, bolstering our confidence in
the reliability of asteroseismic techniques. The longer data sets that will
ultimately become available will allow future studies of differential rotation,
convection zone depths, and long-term changes due to stellar activity cycles.Comment: 6 pages, 2 figures, 2 tables, ApJ Letters (accepted
Computational shelf-life dating : complex systems approaches to food quality and safety
Shelf-life is defined as the time that a product is acceptable and meets the consumers expectations regarding food quality. It is the result of the conjunction of all services in production, distribution, and consumption. Shelf-life dating is one of the most difficult tasks in food engineering. Market pressure has lead to the implementation of shelf-life by sensory analyses, which may not reflect the full quality spectra. Moreover, traditional methods for shelf-life dating and small-scale distribution chain tests cannot reproduce in a laboratory the real conditions of storage, distribution, and consumption on food quality. Today, food engineers are facing the challenges to monitor, diagnose, and control the quality and safety of food products. The advent of nanotechnology, multivariate sensors, information systems, and complex systems will revolutionize the way we manage, distribute, and consume foods. The informed consumer demands foods, under the legal standards, at low cost, high standards of nutritional, sensory, and health benefits. To accommodate the new paradigms, we herein present a critical review of shelf-life dating approaches with special emphasis in computational systems and future trends on complex systems methodologies applied to the prediction of food quality and safety.Fundo Europeu de Desenvolvimento Regional (FEDER) - Programa POS-ConhecimentoFundação para a Ciência e a Tecnologia (FCT) - SFRH/BPD/26133/2005, SFRH/ BPD/20735/200
Overexpression of the Transcription Factor HAA1 to enhance Komagataella phaffii resistance to inhibitory compounds.
The use of renewable feedstocks, like lignocellulosic biomass, is growing rapidly in industrial biotechnology because of its usage in bioprocesses. This biomass originates, principally, from agroindustry residues and can be used to obtain substances such as xylonic acid. Unfortunately, one of the biggest obstacles for the usage of lignocellulosic biomass is the microorganism response to inhibitory compounds found in renewable biomasses after they are pre-treated using hydrolyses, such as acetic acid and lignin derived aromatic compounds. Those can inhibit or even completely block the cell’s metabolic activity
Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis
Jurisdictional approaches to sustainable agro-commodity governance:The state of knowledge and future research directions
info:eu-repo/semantics/publishedVersio
- …
