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Abstract Shelf-life is defined as the time that a product
is acceptable and meets the consumers expectations
regarding food quality. It is the result of the conjunction
of all services in production, distribution, and consump-
tion. Shelf-life dating is one of the most difficult tasks
in food engineering. Market pressure has lead to the
implementation of shelf-life by sensory analyses, which
may not reflect the full quality spectra. Moreover, tra-
ditional methods for shelf-life dating and small-scale
distribution chain tests cannot reproduce in a labora-
tory the real conditions of storage, distribution, and
consumption on food quality. Today, food engineers
are facing the challenges to monitor, diagnose, and
control the quality and safety of food products. The
advent of nanotechnology, multivariate sensors, infor-
mation systems, and complex systems will revolutionize
the way we manage, distribute, and consume foods.
The informed consumer demands foods, under the legal
standards, at low cost, high standards of nutritional,
sensory, and health benefits. To accommodate the new
paradigms, we herein present a critical review of shelf-
life dating approaches with special emphasis in compu-
tational systems and future trends on complex systems
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Introduction

Shelf-life dating (SLD) is a consequence of food perish-
ability during storage and distribution (Labuza 1972).
SLD can be categorized into several dating systems:
(1) ‘Produced by’—information on the production date,
(2) ‘Distribution date’—information on when the food-
stuff starts its distribution, (3) ‘Sell by date’—last date
when foods must be sold, (4) ‘high-quality period’ (or
‘best before’)—time period during which nutritional
and sensory qualities are considered as high, and (5)
‘shelf-life date’—when the foods are non-consumable
and removed from the store (OTA 1979; Labuza 1982;
Kilkast and Subramanian 2000; Eskin and Robinson
2001; Steele 2004).

All foods are susceptible to quality and safety losses.
Shelf-life should reflect the loss dynamics, not simply
reducing it to the number of days foods are to be
removed from the market. The new paradigm is to
establish a consumer-oriented SLD system, reflecting
the quality loss dynamics.

Dynamic SLD is a consequence of the internal (e.g.,
physical, chemical, biochemical, and microbiological
contaminations) and external (e.g., climate, ecology,
farming practices, storage and distribution conditions,
and human interaction) mechanisms. The information
needed to derive a valid shelf-life is difficult to be
preestablished by laboratory assessment. Therefore,
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determination of the impact of external factors is
also needed. Today, the capacity for monitoring each
food product throughout the distribution chain (DC)
is becoming a reality because of microelectronics,
which opens opportunities for computational methods
(Ledauphin et al. 2006; Martins et al. 2007a; Ledauphin
et al. 2008; Roca et al. 2008; Siripatrawan and Jantawat
2008).

SLD is a difficult problem. The first approaches
considered that limiting factors are mostly sensory and
not much attention was paid to nutritional quality.
Typical storage tests are conducted at different stress
levels using sensory attributes as limiting factors. When
sensory panelists perceive product deterioration, the
shelf-life limit is established (Gacula 1975; IFST 1993,
1998; Marsili 2000; Kilkast 2000; Giese 2000). In many
cases, the microbial growth at this limit is not even near
the regulatory level, but nevertheless, the obligatory
tests must be performed to guarantee large food safety
margins.

Quality loss kinetics have been introduced to charac-
terize the influence of storage and distribution. These
are categorized into (1) microbiological growth, recov-
ery, and death models (predictive microbiology [PM]),
(2) physical determinations (e.g., texture and color),
and (3) chemical/biochemical parameters that affect
nutritional and toxicological factors. A first example
of this strategy was the time–temperature–tolerance
studies (TTT) (Van Arsdel 1957). TTT aimed at provid-
ing specifications, tolerances, and improvements during
storage and critical points throughout the DC, provid-
ing a comprehensive data compilation on refrigerated
foods (Labuza 1982). Important assessments on quality
and safety loss kinetics on several foods are available
and compiled in the literature (OTA 1979; Labuza
and Szybist 1999; Rahman 1999; Man and Jones 2000;
Kilkast and Subramanian 2000; Eskin and Robinson
2001; Steele 2004).

Time–temperature integrators (TTIs) are developed
to provide a dynamic SLD (Wells and Singh 1988a).
These are devices with an internal enzymatic reaction
that enhances a color change indicating the cumula-
tive time–temperature history of foods along the DC
(Taukis 1989; Wells and Singh 1988b; Taukis et al. 1991;
Labuza et al. 1992; Tung and Brit 1992; Wells and Singh
1997, 1998). However, a single enzymatic reaction is
not representative of the quality spectrum and temper-
ature profile across the package. TIIs are still regarded
as qualitative indicators and not true dynamical SLD
(Wells and Singh 1988a).

Another method of SLD is by determining the
cumulative effect of heat along the DC, considering
that foods have different heat loads (King et al. 1988;

Brockwell 1999; Estrada-Flores et al. 2006a, b). A
different methodology of SLD is by using kinetics
and temperature records from a characteristic logistics
pathway to estimate quality losses. By characterizing
residence times and temperatures at each DC node,
it is possible to obtain by Monte Carlo simulation
the quality loss statistical estimates and derive SLD
on a probabilistic basis (Spiess et al. 1998). Never-
theless, satisfactory results are only obtained when
residence times and temperature are controlled; other-
wise, large confidence intervals are obtained (Martins
et al. 2007a; Martins 2004). SLD has been also tried
out by using hazard analysis statistical models, such as
the Weibull function (Duyvesteyn et al. 2001; Cardelli
and Labuza 2001). More recently, statistical approaches
using Markov models (Ledauphin et al. 2006, 2008) and
artificial neural networks used for modeling shelf-life
(Siripatrawan and Jantawat 2008) have been also used
to estimate the shelf-life of foods.

As food quality and safety loss are nonlinear and
multivariate, these approaches fail to capture the DC
dynamics. Monitoring throughout the DC is essential
to obtain information for establishing a robust SLD
system. Monitoring at the DC is usually conducted
through random destructive sampling at discrete points,
and there is still a lack of standard methodology for
obtaining detailed information from the DC.

Computational methods bridge experimental and
DC data with information systems. Figure 1 presents
the main concepts and relationships between the ex-
perimental and computational shelf-life dating (CSLD)
methodologies. Experimental methodologies include
(1) experimental quality and safety characterizations,
(2) constant stress level testing, (3) accelerated life
testing (ALT), and (4) dynamical tests at the DC (Wells
and Singh 1988a). CSLD methodologies merges (1)
logistics, (2) technometrics (monitoring data interpre-
tation and control), and (3) complex systems (CS—
simulation of shelf-life), enabling the interpretation of
multi-scale scenarios (Martins et al. 2007a).

Experimental and computational approaches are
complimentary. Experimental methodologies are de-
signed to provide information on quality and safety
losses, which are then subjected to mathematical mod-
eling. The information, in conjunction with available
internal and external factors, is used to establish shelf-
life dates (Martins et al. 2007a). Experimental and
theoretical computational studies show that shelf-life
(food quality and safety) are multivariate CS problems
(Shalizi 2001; Martins 2004) and can only be solved by
computational methods (Martins et al. 2007a). In this
article, we present a comprehensive review on compu-
tational methods.



Food Bioprocess Technol (2008) 1:207–222 209

Fig. 1 Experimental and
computational approaches
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Figure 2 presents the main procedures for the estima-
tion of SLD. These include (1) identification of qual-
ity and safety parameters, (2) determining the stress
variables, (3) survey of kinetic models and degradation
mechanics, (4) ALT, and (5) CSLD.

Quality parameter identification is the first and most
important part, because the accuracy of the dating
system depends upon the monitored variables and re-
sponses (quality parameters). Several representative
quality parameters should be chosen from groups: (1)
microbiological, (2) physical, (3) chemical, (4) bio-
chemical, and (5) sensory. SLD is expensive on human
resources, equipment, and consumables. Therefore, it
is important to assure the quality of the gathered
information.

Relevant variables and responses (quality parame-
ters) are only possible to derive using data-driven sta-
tistical analysis, and therefore, one should quantify the
largest number of possible quality parameters from

the different categories. A good way to start is to
find relevant information on degradation mechanisms
(Fennema et al. 1973; Fennema 1973; Coultate 1996;
Taub and Singh 1998) and kinetic data (Labuza 1982;
Jul 1984; Man and Jones 2000; Steele 2004) for each
category. In many cases, it is difficult to find complete
kinetic information being necessary to proceed with
kinetic determinations. Therefore, the shelf-life engi-
neer has to have a theoretical background on physical–
chemical mechanisms of quality loss to select which
parameters should be characterized.

After parameter selection, it is necessary to define
the stress variables. Generally in SLD, the following
are considered: (1) temperature, (2) water activity,
(3) oxygen and antioxidant activity (oxidation man-
agement), (4) pH, (5) ionic strength, and (6) light. In
many cases, the stress variables have to be combined
to determine synergistic effects, such as, in oxidation,
the effects of temperature, oxygen, antioxidants, pH,
and light or even the presence of catalysts (Fennema
1973). Packaging is also another important factor to
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Fig. 2 Computational shelf-life dating procedures: a are constant stress level models valid?; b do models hold their theoretical
assumptions under dynamic conditions?
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be taken into consideration. Packaging materials and
geometrical shapes allow different levels of heat/mass
transfer and light exposure, which significantly affect
the rate of quality loss reactions (e.g., water and oxygen
exposures). The same food will exhibit a different shelf-
life under different packaging materials.

Constant Stress Level

Constant stress level storage tests lie at the center of
SLD (Hills and Crieger-Block 1980; Labuza 1984). In
these, foods are subjected to constant storage condi-
tions at several stress level variables to determine the
deterioration mechanisms and validation of quality loss
kinetics (Gacula 1975; BlackBurn 2000). Food degrada-
tion can be assumed, in general, as a reaction kinetics of
order n:

dC
dt

= −kCn (1)

where C is the quality parameter concentration (g l−1),
t the time (s), and k the kinetic rate (units depend on
reaction order: Cn−1 s−1). Most of quality loss reactions
tend to follow either zero, first, fractional conversion,
or second order reaction kinetics, with the exception
of enzyme or microbiological growth kinetics (Villota
and Hawkes 1992). The zero, first, and second reaction
kinetics are presented as follows, respectively:

C = C0 − kt (2)

C = C0 · e−kt (3)

1

C
= 1

C0
+ kt (4)

where C0 is the initial quality. A generalized equation
for reaction order greater than one can be presented as
follows:

C1−n = C1−n
0 − (1 − n)kt. (5)

Another widely used kinetics is the fractional con-
version kinetics, which describes a chemical reaction
until equilibrium is established (e.g., ascorbic and
dihydro-ascorbic acids [AAs]):

C − Ceq

C0 − Ceq
= e−kt (6)

where Ceq is the final quality at the chemical equilib-
rium. Temperature is one of most important variables
in food preservation. One of the first approaches for
describing the temperature effect was the Q10 concept:

Q10 = k(T + 10)

k(T)
(7)

where T is the temperature (K) and Q10 is the increase
in k given by a 10 ◦C increase in T. However, it is
generally accepted that the temperature effect on most
chemical reactions is well described by the Arrhenius
equation:

k = k0 · e
[
− Ea

R

(
1
T − 1

T0

)]
(8)

where k0 is the kinetic rate at T0 (K), Ea the Arrhenius
activation energy (J mol−1) and R the gas constant
(J mol−1 K−1). It is possible to relate Q10 to Ea, by:

Ea = 0.2303R · log(Q10) · T(T + 10), (9)

which is useful for converting older data records
(Labuza 1982). Reaction kinetics can also decrease be-
cause of second order phase transitions (Roos 1995). In
low aW foods, which are either in the glassy or rubbery
state, the influence of temperature is more likely to
follow the William–Landel–Ferry (WLF) behavior:

ln(k) = −A1 · (T − Tg)

A2 + (T − Tg)
(10)

where A1 and A2 are universal constants and Tg the
invariant glass transition temperature. Under this as-
sumption, k is more sensitive near Tg than the Ar-
rhenius equation. In foods with limited diffusion, it is
possible to relate Ea = f (T, Tg) by:

Ea = RTTg

Tg − T

[
A1(T − Tg)

A2 + (T − Tg)
+ ln(k0)

]
, (11)

which might be useful to be used if foods are in the
rubbery state, where both WLF and Arrhenius are
complementary.

PM models can complement SLD for estimating
microbial growth, survival, and repair during storage
(Pin et al. 1986; Foegeding 1997; Pin et al. 1997). Shelf-
life should not be established using limit microbiolog-
ical factors, and a significant safety margin should be
used to assure low risk of exceeding the contamination
regulatory levels. PM models are divided in two cate-
gories: (1) primary—derived from theoretical assump-
tions, and (2) secondary models—which use ‘black box’
or hybrid models, such as artificial neural networks
(Geeraerd et al. 1998; Hajmeer and Basheer 2003). Al-
though the second approach is more practical because
of the complexity of microorganisms, it is more difficult
to be used in conditions different from the ones the data
were collected. Primary models have the advantage of
allowing to test directly the cause–effect by mathemat-
ical reasoning. Many PM growth models and data are
available (Gompertz 1825; Eifert et al. 1997; Baranyi
et al. 1993; Baranyi and Roberts 1995; Hills and Wright
1994; Hills and Mackey 1995; Buchanan et al. 1997;
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McKellar 1997). PM injury and repair models are ex-
tremely important for preprocessed/refrigerated foods.
However, repair mechanisms are poorly understood;
models such as those adopted by Hills and Wright
(1994), Hills and Mackey (1995), and McKellar et al.
(1997) can be used to estimate recovery. A consider-
able number of PM models are today available in the
ComBase database (Baranyi and Tamplin 2004). More
sophisticated robust PM models will only be available
when the knowledge about the internal physiology
and cellular communities increases. Comprehensive re-
views on PM modeling can be found in Mackeller and
Lu (2004) and Peleg (2006).

Kinetics determination is performed by regression
analysis. The mostly used methodologies are (1) the
differential method (Singh 2000), (2) the two-step pro-
cedure (Labuza and Riboh 1998), and (3) the one-
step procedure (Arabshahi and Lund 1985; Cohen and
Saguy 1985; Haralampu et al. 1985). The differential
method increases the noise ratio, influencing the quality
of regression even when using smoothing functions
(Savitzky and Golay 1964). Therefore, integrated ki-
netic laws are always preferred. A robust methodology
for determining kinetics is to divide the study into
two parts: (1) Part I: using the two-step procedure
to explore kinetics model candidates and (2) Part II:
using the one-step approach to select and validate the
final model. Nonlinear regression of kinetic models
comprises deriving and solving the normal equations
for each model. Derivatives can be determined ana-
lytically or numerically, and solving normal equations
is performed by optimization methods such as Gauss–
Newton, Levenberg–Marquardt, or evolutionary meth-
ods (e.g., genetic algorithms; Bates and Watts 1988;
Neter et al. 1996).

In the two-step approach, the first step is used to
study several kinetic models at each stress level to
preselect statistically valid model candidates describing
the kinetic law. Thereafter, in the second step, the es-
timated kinetic rates are used to study the influence of
the stress variable(s) on the kinetic rate (e.g., Arrhenius
or WLF; see Algorithm 1). In both steps, statistical
significance of both models and parameters must be
ensured. The lack of fit test and Student’s t analysis to
kinetic parameters is sufficient at this stage to establish
model candidates for the one-step procedure (Neter
et al. 1996).

The one-step approach is being used to select and
validate the kinetic models screened during the two-
step procedure. This methodology uses all variance
in data, to determine if data follows a statistically
consistent kinetic pattern (Arabshahi and Lund 1985;
Cohen and Saguy 1985; Haralampu et al. 1985, see

Step One: Determine the kinetic law

Require: StressLevels ≥ 3
Ensure: Model is Statistical Significant

for i = 0 to N Models do
while StatSig is True And StressLevel ≤ StressLevels do

Model ← Regression(Model,KineticData);
StatSig ← Significance(Model);
StressLevel++

end while
end for

Return ModelCandidates

Step Two: Determine stress variable influence

Require: ModelCandidates And StressModel
Ensure: StressModel is Signifi cant

for i = 0 to N Model Candidates do
for j = 0 to N Stressor Model do

KineticRates←GetKineticRate(ModelCandidates[i])

Model←Regression(StressModel[j],KineticRates);
StatSig←Significance(Model);
if StatSig is True then

StressCandidate[i] is StressModel[i]
end if

end for
end for

Algorithm 1 Generalised two-step procedure for kinetic models
exploration

Algorithm 2). Robust regression methods use weight-
ing functions for the residuals (e.g., Huber function
[Huber 1981]), which minimizes distortions from out-
liers (Rousseeuw and Leroy 1987). One-step approach

Require: ModelCandidates And StressCandidate

Ensure: FullModel is Statistically Significant

BootStrapSamples←BootStrapp(DataSamples,N bootstrap)

for i = 0 to N Full Models do
for j = 0 to N bootstrap do

FullModel[i,j]←Regression(FullModel[i],BootStrapSample[j]);

end for
StatSigPress[i]←PressStatistics(FullModel[i])

StatSigKinPar[i]←KinParamStats(FullModel[i])

if StatSigPress[i] is True And StatSigKinPar[i] is True then
FullModel[i] is Significant

else
FullModel[i] is NotSignificant

end if
end for
ListOfModels←SortSignificantModelsPress(FullModel[i])

Return ListOfModels

Algorithm 2 Generalised one-step procedure for kinetics deter-
mination, validation and selection
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uses also a bootstrap resampling algorithm for model
validation. A large number of bootstrap samples (n ≥
5,000) are derived from the original data to validate
each one of the model candidates (Efron and Tibshirani
1993; Davinson and Hinkley 1997). For each bootstrap
sample i, the kinetic parameters and predicted sum of

squares (PRESS) are obtained by
∑n

i=1

(
Yj − Ŷj

)2
,

where Yj is the data leftover from the original data
set after subtracting bootstrap sample i and Ŷj the
model prediction for the j sample so that it is possible
to derive for each model, both PRESS and kinetic
parameters statistical distributions from the original
data. Valid models present significant kinetic parame-
ters (Student’s t) and the lower statistically relevant
PRESS (Manly 1998).

Residuals should be studied for tendencies, outliers,
randomness, and normality (Box et al. 1978). Out-
liers and trends give hints on experimental errors and
theoretical assumptions during kinetic modeling. They
should be investigated to improve the accuracy of mod-
els. For deeper information, please consult Bates and
Watts (1988) and Neter et al. (1996).

In many experiments, storage conditions are not con-
stant, such as in the refrigerators and humidity cham-
bers. A recent study shows that temperature fluctuation
inside a refrigerator can influence the accuracy of the
kinetic estimates and that, during storage studies of
frozen green beans, temperature fluctuation should be
taken into consideration to obtain a robust kinetic de-
termination. In these cases, one should use the two-step
procedure to obtain the kinetic law estimate taking into
account the time–temperature records and, thereafter,
use accelerated shelf-life testing techniques to improve
the kinetic estimates (Martins and Silva 2004c; Martins
et al. 2004b).

Accelerated Life Testing

ALT objectives are to (1) bring down the mean time
to failure (MTTF) in long storage experiments (e.g.,
refrigerated, frozen, dehydrated foods, fats, and oils)
(Viertl 1986; Høyland and Rausand 1994), (2) test and
validate kinetic mechanisms under dynamic conditions,
and (3) increase the accuracy of parameter estimates
by decreasing the error in the stress variable, or when a
constant stress test is not practical (stage b in Fig. 2).

The majority of ALT techniques are designed only
to fulfill the first criteria. These studies generally submit
foods to high temperatures, water activity, oxygen, and
low pHs to bring down the MTTF, which is given
by critical parameters (e.g., sensory, microbiological
growth, vitamin C) (Mizrahi et al. 1970; Waletzko and

Labuza 1976; Saguy et al. 1978; Labuza and Schimdl
1985). More sophisticated approaches use the two-step
methodology to derive kinetic parameters with a re-
duced number of experiments at higher levels of stress
(e.g., temperature) and, thereafter, extrapolate the ki-
netic rates and shelf-life for lower storage temperatures
(Ragnarsson and Labuza 1977; Corradini and Peleg
2004, 2007). Nevertheless, extrapolation involves high
risk of bias, and estimates are prone to systematic errors
(Box et al. 1978; Bates and Watts 1988; Neter et al.
1996). To overcome this problem, linearly increasing
stress tests using temperature as stress variables were
developed and assessed in terms of accuracy and pre-
cision. Unsatisfactory results were obtained with 5%
of error in specimen concentration, being necessary
larger data sets (Rhim et al. 1989a, b; Nunes et al. 1991;
Brandão and Oliveira 1997; Frias 1998).

Most of the difficulties of the ALT methodology
for kinetics determinations are because of (1) lack
of synchronization between sampling and tempera-
ture records, (2) large errors in the analytical method
(e.g., extractions for gas chromatography or high-
performance liquid chromatography analyses), and (3)
error in thermocouple position (temperature repre-
sentativity). Precautions that minimize these effects
turn ALT into a high-output quality loss data method
(Martins 2004). Under dynamic temperature condi-
tions, quality loss is presented for the n order reaction
kinetics:

Cn = Cn
0 − (1 − n)k0

∫ t

t0
e
[

Ea
R

(
1
T − 1

T0

)]
dt +

∫ t

t0
w(t)dt (12)

where w(t) is the noise function (
∫ t

t0
w(t)dt = 0 when

t → ∞, if w(t) is white noise). For the first order
kinetics:

C
C0

= exp
[
−k0

∫ t

t0
e
[

Ea
R

(
1
T − 1

T0

)]
dt

]
+

∫ t

t0
w(t)dt (13)

where C
C0

can be replaced by C−Ceq

C0−Ceq
for the fractional

conversion kinetics model under ALT conditions.
Under dynamical conditions, the robust regression
algorithm for determining kinetics under ALT con-
ditions is similar to the one-step procedure, except
that the stress integral (

∫ t
0 S(t)dt) has to be estimated

before robust regression analysis (see Algorithm 3).
The stress integral for the Arrhenius behavior is pre-

sented as follows:
∫ t

t0
exp

[
Ea
R

(
1

T(t) − 1
T0

)]
dt, whereas,

if the WLF kinetics are applicable, it takes the form:∫ t
t0

exp
[−A1·(T(t)−Tg)

A2+(T(t)−Tg)

]
dt. The stress integral must be

computed using the regression estimates obtained from
the normal equations using the each initial estimates
until convergence (Martins et al. 2004b). Validation is
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Require: ModelCandidates And TemperatureRecords

Ensure: FullModel is Statistically Significant 

BootStrapSamples BootStrapp(DataSamples,N bootstrap )

E a1 ,k 1
0 ←

←
InitialEstimates();

for i = 0 to N Full Models do
for j = 0 to N bootstrap do

while Convergence is FALSE do
StressIntegral←CalcStressInt(E ai ,k i

0 )

FullModel[i,j]←Regression(FullModel[i],BootStrapSample[j],

StressIntegral);

Convergence←CheckConvergence(FullModel[i,j])

end while
end for
StatSigPress[i]←PressStatistics(FullModel[i])

StatSigKinPar[i]←KinParamStats(FullModel[i])

if StatSigPress[i] is True And StatSigKinPar[i] is True then
FullModel[i] is Significant

else
FullModel[i] is NotSignificant

end if
end for
ListOfModels←SortSignificantModelsPress(FullModel[i])

Return ListOfModels

Algorithm 3 Generalised ALT procedure for kinetics determi-
nation assuming Arrhenius behaviour with temperature

also performed by bootstrap resampling to estimate the
model parameters and PRESS criteria (Manly 1998).

The full potential for ALT is yet dependent upon im-
plementation of high-output and nondestructive analyt-
ical techniques. Techniques such as spectroscopy (e.g.,
UV–VIS–SWNIR, infrared, and terahertz) and image
analysis (e.g., hyperspectral imaging and biosensors)
may aid in the direct quantification of physical, chem-
ical, and microbiological on foods, achieving complete
synchronization.

Computational Shelf-Life Dating

Shelf-Life as a Complex System

A list of properties characterizes CS: (1) elements and
their number—the building blocks of a CS, (2) dynamic
interactions and their strength, (3) formation/operation
and their time/space-scales, (4) diversity/variability, (5)
environmental conditions, and (6) activity of its parts
(Yam 1997). System objects are organized into groups
and hierarchies (multi-scaled), and system structures
may adapt over time (Fox 1988; Fontana and Buss
1994; Shalizi 2003). CS present emergence, synergistic,
and antagonistic behaviors. An emergent property is a
macroscopic behavior that emerges from interactions
between system objects and their intrinsic behavior,
being solely explained by the integrated action of the

elements (Bak 1996; Yam 1997; Hordijk 2001; Shalizi
2001).

Macroscopic models (e.g., mass/heat transfer, fluid
flow) are established by mathematical reasoning and
data-driven statistical analysis, ensuring a cause–effect
relationship between variables and responses. Causal
relationships are only observed between elementary
parts. The scaling-up of these elementary relationships
leads to the emergence of macroscopic structures at dif-
ferent scale levels (Wolfram 1994; Goles and Martinez
1997; Feldman and Crutchfield 1998; Salmon 1998).
This kind of organization is observable in foods and
presents significant implications for SLD because qual-
ity loss is a multi-scaled phenomenon (Martins 2004).

General precautions should be taken into considera-
tion when building CS models, such as (1) interactions
between parts must be understood at any and between
scale levels: (2) do not assume that solutions are smooth
in problem’s domain and (3) do not assume that some
elementary parts are nonrelevant. CS models represent
effects into abstraction levels and bridge information
between scales to model global behavior (GB).

Figure 3 exemplifies the multi-scale philosophy used
for CSLD. In this approach, each level presents objects
that form structures with internal behaviors. Emer-
gence occurs at each scale level by the combination
of each element and composites, being possible to
control simulation from the smaller scales, such as
physical (e.g., phase change, heat/mass transfer at dif-
ferent scales), chemical (reaction collisions under dif-
ferent media), biochemical (enzymatic, metabolomics,
genomics, and proteomics), and microbiological (syn-
thetic biology or PM models) phenomena. In the
macroscales, factors that may need to be considered
include food structures, packaging systems, transporta-
tion, warehouses, and the DC with all the necessary
detail of environmental effects and human interaction
(see Fig. 3). The proposed approach uses CS method-
ologies to organize a scenario simulation environment
where food degradation is a consequence of internal
mechanisms and responses to the environmental con-
ditions observed during storage and distribution.

Human interaction is generally neglected during
SLD. DC personnel and consumers behavior may lead
to quality and safety losses, such as temperature abuses
because of consumer behavior at the store, transporta-
tion to home and home storage. As human behavior
is not controllable and it is difficult to be reproduced
in the laboratory, it has not been assumed in shelf-life
studies.

Agricultural transformation and distribution are col-
lective systems, presenting a large volume of interac-
tions between agents and system structures, forming
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Fig. 3 Food quality and
safety as a CS: multi-scaled
structure and dynamical
relationships

complex patterns of multi-level interactions, where
ecosystems, climate, biological materials, machinery,
information systems, and human behavior play an im-
portant role. The main difficulty in modeling SLD is
to derive how much information is needed to describe
quality losses throughout the DC. This is the subject of
a new branch of modeling applied in the simulation of
food and bioengineering CS (Martins et al. 2007b). A
prototype computational system based on CS philoso-
phy was developed for initiating fundamental research
in this area (Martins 2004).

System Architecture

Quality and safety of foods have been modeled using
the methodologies presented in “Shelf-Life Estima-
tion.” Sophisticated tools such as computational fluid
dynamics (CFD) have been used for the design of
equipment and process optimization (Romano et al.
2005; Zou et al. 2006; Varma and Kannan 2006; Zhang
and Datta 2006; Xie et al. 2006; Hernandez and Belles
2007), with no applications in the estimation of shelf-
life. CFD lacks the abstraction and flexibility necessary
for CSLD. Furthermore, traditional interpretation of
data in CFD is visual, which is not ideal for the inter-
pretation of large volumes of physical, chemical, and
microbiological quality profiles determined by simula-
tion. Therefore, a new tool is necessary for developing
CSLD (Martins et al. 2007a). A CS simulation pro-
totype framework was developed as a ‘proof of con-
cept’ and implemented in C++ (Meyers 1998; Barton

and Nackman 1991), using only open source resources
(Martins 2004).

Classes and Relationships

The CSLD system was built on the multi-scale model-
ing and scenario technology (Cohen and Harel 2007,
see Fig. 4). Simulation scenarios of elementary objects
in the system are represented by finite elements (FEs).
FE methods discretize physical, chemical, biochemi-
cal, and PM differential equations, which can be used
to simulate most of the phenomenon that occur dur-
ing food production, storage, and distribution. Funda-
mental levels can also use the fusion of FEs method
discretizations with cellular automata (CA) (Martins
2006) and individual-based modeling for describing
noncontinuous phenomena in the FE space (Martins
and Lopes 2007). FE can hold many object-oriented
paradigms and, by making the FE discretization inde-
pendent of the PDE to be descretized on it, gives the
necessary flexibility to describe physical, biochemical,
and microbiological phenomena inside the elementary
space. The FE multiplicity of dimensions and shape
functions makes this method ideal for the use of in-
heritance and polymorphism between elements and
shape functions (Martins 2004). Control structures at
the macroscale are possible to be built from elements
and elementary relationships. The assembly of the dif-
ferent control structures leads to the emergence of
the system object libraries (e.g., transportation, ware-
houses, retail stores, packaging systems; see Fig. 4). The
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Fig. 4 Complex systems
simulation system prototype
architecture: a multi-scale
class organization,
b cluster/grid access,
c distributed functional
decomposition
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current system mode of operation resumes to the fol-
lowing steps: (1) scenario building using the prototype
libraries at the different scale of object, that is, defining
the scenarios, objects, and interactions at the different
levels; (2) scenario computation and simulation—The
compiled binaries (host and node programs) are allo-
cated in the distributed system; these are controlled by
the user interface configuration scripts where physical
and chemical parameters are selected (e.g., kinetics,
heat/mass transfer) and a scenario control script where
the compiled objects can be manipulated before simu-
lation; and (3) scenario result visualization (CFD like)
and data analysis (e.g., Technometrics). The prototype
system that uses third party open source libraries for
matrix storage (Blitz++, Veldhuizen 2006), linear alge-
bra (Lapack ++, Dongarra et al. 1995), and distributed
code was performed using PVM (Dongarra et al. 1994).

Cluster/GRID Computing: Scenario Functional
Decomposition

Distributed code was implemented using a ‘scenario
functional decomposition’. This is especially adequate
for large-scale scenario models, where limitations in
client’s memory exist because of the use of commod-
ity hardware. By using this model, communication be-
tween functional groups is minimized, maximizing the
time that processors are kept busy. Buffers were also
used to maintain cluster machines always executing.
Figure 4b summarizes how the functional decomposi-
tion was implemented. The host server is responsible
for managing the tasks spawned to the client nodes,
mediating the peer-to-peer communication of results
between client nodes and, therefore, controlling the
calculus process, which is important for load managing

and scheduling of scenario simulations or under hetero-
geneous computational resources. The host performs
the following tasks: (1) task allocation, (2) task manage-
ment and calculus states of each node for mediating the
peer-to-peer node relationship, (3) data storage (prop-
erty databases, scenario configuration scripts, results,
and mediated buffers). Host programs were designed
to (1) run the client calculation program, (2) state
communication to server and neighboring nodes, (3)
pass results to neighboring nodes, (4) manage buffer
results and send final results to the host server.

Building Scenarios

Scenario modeling is a technology currently applied
to large-scale simulation systems (Harel 2001; Zeigler
et al. 2002), climate and biological systems (Washington
2005; Efroni et al. 2003; Kan et al. 2004) to model
GB. GB is given by interactions within the system
and the environment, which specifies how objects act
and interact to state changes, resulting into outwardly
visible activity (Fig. 5; Jacobson 1992; Martin and Odell
1995; Beringer 1997).

Important properties define a scenario model: (1)
interaction sequences (multiple possible sequences of
events), (2) scenario types (states at which objects are
involved), (3) scenario aggregations (subtype scenarios
for the different objects, concerning their internal ma-
chinery), and (4) generalization (scenario types should
be manipulated conceptually as objects, and by using
hierarchy, inheritance, and polymorphism, it is possible
to develop the scenario objects). Scenario technology
was used as part of the concept for developing acceler-
ated life tests (Martins and Silva 2004c; Martins et al.
2004b) and as well for determining the impact of home
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Fig. 5 Mesoscale to macroscale scenario building for shelf-life estimation: building structures from elementary levels for simulating
full-scale distribution chain problems

storage in the shelf-life of frozen green beans (Martins
and Silva 2004a; Martins et al. 2004a).

Mounting a scenario model is similar to any other
scientific methodology. The first steps are conceptu-
alization by object abstraction at a higher level and
decomposition of the aggregated scenario objects and
their relationships into functions, states, data, interac-
tions, structures, and organization. This analysis allows
building objects into much detail, as it is possible to
modern scientific knowledge to simulate experiments
on a computational basis.

The simple macroscale scenario for simulating fro-
zen green beans ALT has four basic objects: (1) ALT,
(2) refrigerator, (3) green bean model, and the (4)
stopwatch. In this scenario, the ALT object commands
the refrigerator status to increase the thermostat tem-
perature according to the tests specifications (e.g., step
stress tests, linear increase, or any other stress func-
tion), much as it is performed in a ‘real world’ exper-
iment (see Fig. 6).

The refrigerator object class was developed to mimic
the behavior of normal and no-frost refrigerators by
using a limit cycle algorithm (Pandit and Wu 1983;
Martins and Silva 2004c), being an automata that re-
sponds to the environmental temperature, door open-
ings, thermostat position, and load. This class gives the
modeler the opportunity of simulating a large number
of refrigeration conditions and types of refrigerators to
study their impact on food quality and shelf-life. There-
fore, once the ALT object increases the thermostat
position, temperature inside the refrigerator increases
accordingly to its dynamics, allowing to reproduce real

test conditions of heat loss and thermal cycle fluctua-
tions that affect the surface heat transfer at the surface
green bean stagnated air (see Fig. 6).

The green bean object responds dynamically to tem-
perature fluctuations, affecting the internal chemical
composition across the physical domain. Each increase
in temperature accelerates the degradation process,
which is calculated by an ordinary differential equa-
tion discretization of chemical reactions inside the FE
space (Martins 2006). Furthermore, kinetics are highly
influenced by biological variability, which can be im-
plemented by using the stochastic FE methodologies,
being possible to propagate uncertainties on physical
and chemical laws across the physical domain to obtain
a statistically representative solution (Martins 2006).

A simple scenario was also developed as a ‘proof of
concept’ simulating home storage to test the validity
of the star marking system. The star marking system
classifies refrigerators by their operational temperature
(e.g., no star +5 ◦C, � −6 ◦C, �� −12 ◦C, � � � −18 ◦C),
and it is used to inform the consumer about the time
that frozen foods should be kept inside their refrigera-
tor according to its class. In this scenario, a green bean
package object is developed with different packaging
materials and stored inside different refrigerators at the
recommended star marking temperatures and storage
periods, respectively. Simulation results show that the
packaging material is capable of affecting quality re-
tention. Furthermore, the different quality parameters
are differently affected by fluctuations of the thermal
insulation. Low Ea’s, such as AA auto-oxidation and
starch hydrolysis, are not as significantly affected by



Food Bioprocess Technol (2008) 1:207–222 217

ALT

+Test Parameters

+Test Status

+Test State

-ALT(): Constructor

+StressLevel(): function

-TestControl(): function

+TestFunctions(): function

-Comunications(): function

StopWatch

+Lap: natural

+Time: real

+state: categorical

-StopWatch(): Constructor

+StartLap(): function

-StopLap(): function

+Restart(): function

-CountDown(): function

+Communications(): Function

Refrigerator

+Power: Boolean

+Refrigeration Cycle: Boolean

+Light: Boolean

+Failure States: categorical

+Components States: Categorical

+Specification: real

-Refrigerator(): Constructor

+Heater(): Object

-Thermostat(): Object

+Light(): function

-Compressor(): function

+Air Fan(): Object

+DefrostMode(): function

+OpenDoors(): function

GreenBean

+Chemical Parameters: ODE Object
+Physical Domain: Mesh Object

+Physical Phenomena: PDE objects

+Physical Parameters: Constants

-GreenBean(): Constructor

+HeatMassTransfer(): Object

-QualityLoss(): Object

+Elements(): Object

-Comunications(): function

a b

ALT StopWatch Refrigerator

{Time Query()}

{Time}

Green Bean

Check

Test

Status {Increase Thermostat ()}

Increasing Thermostat

position: dynamic

Temperature response

{Temp,FluidDyn}
Dynamic Response:

Temperature

Physical

Chemical

BioChemical

Sensory

Fig. 6 Simple macroscale scenario-driven design for the simulation of accelerated life testing: a UML class relationships and b UML
objects interaction diagram

the insulation material or the use of lower storage tem-
peratures. On the contrary, sensory parameters, such
as flavor and color, are highly affected by the effect of
thermal fluctuations and packaging thermal insulation
(Martins et al. 2004a).

Another ‘proof-of-concept’ scenario simulation was
tested to determine quality retention during thawing
at environmental and refrigeration temperatures. In
this case, the scenario was mounted to determine the
best conditions at which frozen green beans should be
thawed before direct culinary usage (e.g., salads), to
test if the ‘high-temperatures short-time’ (HTST) prin-
ciple is applicable to thawing. A green bean package
is placed on a polyethylene tray to thaw at environ-
mental temperatures (+15 to +25 ◦C simulated with
auto-regressive time series models) and inside the
refrigerator (+3 to +7 ◦C). Simulations have shown
that, during thawing, the packaging material and the
environmental conditions have profound implications
on quality retention. Good insulation materials have
shown that thawing times can increase up to 190%. Fur-
thermore, thawing at high temperatures compromises
the sensory retention, proving that the HTST princi-
ple is not applicable to thawing frozen green beans.
Thawing inside the refrigerator has proven to present
the best results in terms of both sensory and nutritional
quality retention (Martins and Silva 2004b).

CS philosophies can also be used to help under-
stand how emergent phenomenon occurs during food
processing. A more sophisticated CS simulation was
performed for understanding how nucleation occurs

during supercooling of foods (Martins and Lopes 2007).
In this research, a CA was developed to simulate nu-
cleation temperatures across the physical domain of
strawberries. Supercooling is a complex phenomena
where water is maintained liquid below its fusion point
until the nucleation temperature. Low nucleation tem-
peratures are capable of minimizing the size of ice
crystals and therefore increase the texture of frozen
foods. Results have shown that, under supercooling, the
nucleation temperature increases consistently toward
the thermal center. This observation leads to the es-
tablishment of a CA using thermodynamic rules, which
relates to the fact that ice crystals can only grow against
the thermal gradient and that, after nucleation, tem-
perature increases adiabatically locally to temperatures
near the freezing point, using the enthalpy curve to es-
timate the nodal temperature after nucleation and the
neighboring node nucleation temperature. Given these
two restrictions, the CA is capable of estimating with
statistical significance the different freezing conditions,
from high supercoolings to quasi-equilibrium freezing
conditions (Martins and Lopes 2007). CA models prove
also to have a great potential to reproduce highly
nonlinear physical phenomena, such as nucleation un-
der supercooling conditions. CA are a fundamental
research area that may help to solve nonlinear phenom-
ena in foods, especially in applications that require the
modelization of emergent phenomena, such as the use
of micro- and nanotechnologies in foods.

The use of scenarios and CS has advantages
when compared to the traditional modeling techniques
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because it allows the isolation and identification of
objects, their effects and variables at each scale level.
By controlling the interactions in computer models,
researchers can understand at the different scale levels
why quality and safety losses occur, to assist in the
development of new technologies, and the strategic
planning of shelf-life. Consequently, food engineers
and technologists can start to understand shelf-life as
a GB model under the CS philosophy and that foods
can be developed in accordance to storage and distri-
bution conditions to provide high-quality food services
to consumers.

Global Behavior and Shelf-Life Dating

Simple scenarios provide the information to solve with
high detail localized problems at the DC. Nevertheless,
understanding GB is necessary to develop large-scale
scenario simulations and systems that aid the interpre-
tation of the generated data, so that CSLD can be a
valuable strategic and operational tool for food produc-
ers and distributors. Small-scale scenario simulations
can, however, provide a basis for the interpretation of
GB to establish SLD.

Figure 7a presents the plot of frozen green bean
quality loss parameter kinetic sensitivity to storage tem-
perature, which form three major groups: (1) low Ea:
AA, starch degradation, and texture loss; (2) intermedi-
ate Ea: total vitamin C and chlorophylls a and b; and (3)
high Ea: flavor and color retention; and Fig. 7b presents
three types of DC configuration: (1) direct sales, (2)
regional distribution, and (3) large-scale distribution.
Given the studies performed so far with green beans, it
is possible to derive a ‘small world effect’ (Klemm and
Egulluz 2002) for the simple DC presented.

Figure 7a also shows that sensory quality of frozen
green beans (color and flavor) can be preserved for
longer periods at lower temperatures, but are sensitive
to temperature fluctuations. In contrast, nutritional pa-
rameters (AA and starch) are not as sensitive to tem-
perature, but are not being well preserved by low tem-
perature storage. Storing or distributing green beans
above the critical temperature of −8.69 ◦C leads to an
accelerated quality loss, especially for color and flavor
attributes. Temperature abuses are highly detrimental
to the overall shelf-life, as consumers are able to detect
color and flavor deteriorations.

Under direct distribution (Fig. 7b), which is the case
for small production facilities, delivering to local dis-
tributors, spawning the products for a limited number
of stores, Green beans that have a short pathway and
limited periods of exposure to higher temperatures
are expected to have high nutritional and sensory re-
tentions and are possible to adopt a high-quality life
(HQL).

Inside a state or small country (e.g., Portugal), prod-
ucts are delivered at a central distribution platform
where loads are prepared for the different regions and
stores, being transported inside refrigerated lorries. In
this DC type, frozen green beans may suffer significant
temperature abuses. If the refrigeration is not totally
compromised, green beans are likely to retain nutri-
tional quality but loose part of its sensory properties.
Therefore, perhaps the best dating philosophy is to use
the ‘best before’ date, inducing consumers not to use
green beans before a known critical storage date, which
ensures an acceptable sensory quality Best Before Date
(BFD).

In a large-scale DC, such as the European mar-
ket, frozen green beans are subjected to long periods
of transportation and redistributions. The tempera-

Fig. 7 Emergent global
pattern of shelf-life
predictions: a Arrhenius plot
of quality loss factors and b
simple scale-free distribution
chain networks—(1) direct
sales (HQL), (2) regional
distribution (BFD), (3) large
scale distribution (SLD)

a b
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ture fluctuations, transportation, and storage time until
they are available for consumption are reasonably high
when compared to previous examples, making expen-
sive to maintain both HQL or BFD dating philosophies.
In this case, a more conservative philosophy should be
used, reflecting on the shelf-life date when foods have
to be withdrawn from the DC circuit. The SLD should
reflect an equilibrium between the minimum nutri-
tional and sensory retentions acceptable. The larger the
scale of the DC, the tighter control has to be performed
along the chain, so that consumers can still benefit from
quality balanced frozen green beans.

Conclusions

Modeling the quality and safety of foods is a vast
subject, where most factors and their interactions are
still unknown. This article tries to open a new point of
view on how to model food quality and safety, deriving
new methodologies to study the shelf-life of foods as
a consumer-oriented global problem. In the future,
wholistic tools will aid food engineers to establish shelf-
life and manage food quality and safety in great detail.
To accomplish such task, research efforts have to be
put on the study of quality losses of foods, modeling of
multi-scale phenomena, and fundamental research on
the mathematics and computational issues of CS and
scenario simulations. Under these circumstances, food
quality and safety are the most important topics of CS
in bioengineering, considering the increased trading of
agricultural and food products in the global economy.
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