For any graph consisting of k vertices and m edges we construct an
ensemble of random pure quantum states which describe a system composed of 2m
subsystems. Each edge of the graph represents a bi-partite, maximally entangled
state. Each vertex represents a random unitary matrix generated according to
the Haar measure, which describes the coupling between subsystems. Dividing all
subsystems into two parts, one may study entanglement with respect to this
partition. A general technique to derive an expression for the average
entanglement entropy of random pure states associated to a given graph is
presented. Our technique relies on Weingarten calculus and flow problems. We
analyze statistical properties of spectra of such random density matrices and
show for which cases they are described by the free Poissonian
(Marchenko-Pastur) distribution. We derive a discrete family of generalized,
Fuss-Catalan distributions and explicitly construct graphs which lead to
ensembles of random states characterized by these novel distributions of
eigenvalues.Comment: 37 pages, 24 figure