1,702 research outputs found
Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City.
Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management
Five pillars for stakeholder analyses in sustainability transformations: The global case of phosphorus.
Phosphorus is a critical agricultural nutrient and a major pollutant in waterbodies due to inefficient use. In the form of rock phosphate it is a finite global commodity vulnerable to price shocks and sourcing challenges. Transforming toward sustainable phosphorus management involves local to global stakeholders. Conventional readings of stakeholders may not reflect system complexity leaving it difficult to see stakeholder roles in transformations. We attempt to remedy this issue with a novel stakeholder analysis method based on five qualitative pillars: stakeholder agency, system roles, power and influence, alignment to the problem, and transformational potential. We argue that our approach suits case studies of individual stakeholders, stakeholder groups, and organisations with relationships to sustainability challenges
The Effects of Foam Rolling on Hamstring Flexibility, Muscle Soreness and Power
Click the PDF icon to download the abstract
Space Station Engineering Design Issues
Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design
Mapping phosphorus hotspots in Sydney's organic wastes: A spatially explicit inventory to facilitate urban phosphorus recycling
Phosphorus is an essential element for food production whose main global sources are becoming scarce and expensive. Furthermore, losses of phosphorus throughout the food production chain can also cause serious aquatic pollution. Recycling urban organic waste resources high in phosphorus could simultaneously address scarcity concerns for agricultural producers who rely on phosphorus fertilisers, and waste managers seeking to divert waste from landfills to decrease environmental burdens. Recycling phosphorus back to agricultural lands however requires careful logistical planning to maximize benefits and minimize costs, including processing and transportation. The first step towards such analyses is quantifying recycling potential in a spatially explicit way. Here we present such inventories and scenarios for the Greater Sydney Basin's recyclable phosphorus supply and agricultural demand. In 2011, there was 15 times more phosphorus available in organic waste than agricultural demand for phosphorus in Sydney. Hypothetically, if future city residents shifted to a plant-based diet, eliminated edible food waste, and removed animal production in the Greater Sydney Basin, available phosphorus supply would decrease to 7.25 kt of phosphorus per year, even when accounting for population growth by 2031, and demand would also decrease to 0.40 kt of phosphorus per year. Creating a circular phosphorus economy for Sydney, in all scenarios considered, would require effective recycling strategies which include transport outside of the Greater Sydney Basin. These spatially explicit scenarios can be used as a tool to facilitate stakeholders engagement to identify opportunities and barriers for appropriate organic waste recycling strategies
Transforming the European Union's phosphorus governance through holistic and intersectoral framings
This review paper presents a critical perspective on the transformation of phosphorus governance in the European Union to support food and environmental security, which are subject to systemic shocks. It presents three major limitations that act as constraints to this process: (1) the predominance of technical studies, which produce isolated meanings that fail to address the socio-political aspect of phosphorus management and cannot be translated into policy foresight; (2) approaches to change dominated by the linear resource efficiency paradigm narrowly confined within sectoral responses to system shocks; and (3) the constrained policy understanding of the circular economy, which hampers system change as phosphorus reuse is seen primarily as part of the biological cycle of the circular economy and does not advance critical perspectives. We argue that the siloed and heavy regulatory load related to phosphorus produces technocratic and incremental policy revisions, singular state-level approaches and reductionist prisms that exclude extraterritoriality. These exacerbate the inability of institutions to translate technical studies into policy foresight and counter the pervasiveness of linearity. Phosphorus requires instead a holistic and intersectoral governance object that is integrated with the multiple transition instruments on the policy-making agenda of the European Union. To achieve phosphorus sustainability and avoid the dependence on shocks for its self-renewal, phosphorus governance needs to overcome the technocratic incrementalism of individual sectors and adapt to alternative discursive framings that transcend the existing compartmentalization of its meanings. This would require disentangling phosphorus as a contested arena of controversial stakeholder priorities and selectively amplifying the discursive framings that can politicize and enhance its ubiquitous importance. While phosphorus has its unique properties, such an approach can be of relevance to other elements
Towards resolving the phosphorus chaos created by food systems
© 2019, The Author(s). The chaotic distribution and dispersal of phosphorus (P) used in food systems (defined here as disorderly disruptions to the P cycle) is harming our environment beyond acceptable limits. An analysis of P stores and flows across Europe in 2005 showed that high fertiliser P inputs relative to productive outputs was driving low system P efficiency (38 % overall). Regional P imbalance (P surplus) and system P losses were highly correlated to total system P inputs and animal densities, causing unnecessary P accumulation in soils and rivers. Reducing regional P surpluses to zero increased system P efficiency (+ 16 %) and decreased total P losses by 35 %, but required a reduction in system P inputs of ca. 40 %, largely as fertiliser. We discuss transdisciplinary and transformative solutions that tackle the P chaos by collective stakeholder actions across the entire food value chain. Lowering system P demand and better regional governance of P resources appear necessary for more efficient and sustainable food systems
- …