69 research outputs found
Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer
Epithelial to mesenchymal transition (EMT) involves loss of an epithelial phenotype and activation of a mesenchymal one. Enhanced expression of genes associated with a mesenchymal transition includes ZEB1/2, TWIST, and FOXC1. miRNAs are known regulators of gene expression and altered miRNA expression is known to enhance EMT in breast cancer. Here we demonstrate that the tumor suppressive miRNA family, miR-200, is not expressed in triple negative breast cancer (TNBC) cell lines and that miR-200b-3p over-expression represses EMT, which is evident through decreased migration and increased CDH1 expression. Despite the loss of migratory capacity following re-expression of miR-200b-3p, no subsequent loss of the conventional miR-200 family targets and EMT markers ZEB1/2 was observed. Next generation RNA-sequencing analysis showed that enhanced expression of pri-miR-200b lead to ectopic expression of both miR-200b-3p and miR-200b-5p with multiple isomiRs expressed for each of these miRNAs. Furthermore, miR-200b-5p was expressed in the receptor positive, epithelial breast cancer cell lines but not in the TNBC (mesenchymal) cell lines. In addition, a compensatory mechanism for miR-200b-3p/200b-5p targeting, where both miRNAs target the RHOGDI pathway leading to non-canonical repression of EMT, was demonstrated. Collectively, these data are the first to demonstrate dual targeting by miR-200b-3p and miR-200b-5p and a previously undescribed role for microRNA processing and strand expression in EMT and TNBC, the most aggressive breast cancer subtype
Novel application of the published kinase inhibitor set to identify therapeutic targets and pathways in triple negative breast cancer subtypes
Triple negative breast cancers (TNBCs) have high recurrence and metastasis rates. Acquisition of a mesenchymal morphology and phenotype in addition to driving migration is a consequential process that promotes metastasis. Although some kinases are known to regulate a mesenchymal phenotype, the role for a substantial portion of the human kinome remains uncharacterized. Here we evaluated the Published Kinase Inhibitor Set (PKIS) and screened a panel of TNBC cell lines to evaluate the compounds’ effects on a mesenchymal phenotype. Our screen identified 36 hits representative of twelve kinase inhibitor chemotypes based on reversal of the mesenchymal cell morphology, which was then prioritized to twelve compounds based on gene expression and migratory behavior analyses. We selected the most active compound and confirmed mesenchymal reversal on transcript and protein levels with qRT-PCR and Western Blot. Finally, we utilized a kinase array to identify candidate kinases responsible for the EMT reversal. This investigation shows the novel application to identify previously unrecognized kinase pathways and targets in acquisition of a mesenchymal TNBC phenotype that warrant further investigation. Future studies will examine specific roles of the kinases in mechanisms responsible for acquisition of the mesenchymal and/or migratory phenotype
NEK Family Review and Correlations with Patient Survival Outcomes in Various Cancer Types
The Never in Mitosis Gene A (NIMA)–related kinases (NEKs) are a group of serine/threonine kinases that are involved in a wide array of cellular processes including cell cycle regulation, DNA damage repair response (DDR), apoptosis, and microtubule organization. Recent studies have identified the involvement of NEK family members in various diseases such as autoimmune disorders, malignancies, and developmental defects. Despite the existing literature exemplifying the importance of the NEK family of kinases, this family of protein kinases remains understudied. This report seeks to provide a foundation for investigating the role of different NEKs in malignancies. We do this by evaluating the 11 NEK family kinase gene expression associations with patients’ overall survival (OS) from various cancers using the Kaplan–Meier Online Tool (KMPlotter) to correlate the relationship between mRNA expression of NEK1-11 in various cancers and patient survival. Furthermore, we use the Catalog of Somatic Mutations in Cancer (COSMIC) database to identify NEK family mutations in cancers of different tissues. Overall, the data suggest that the NEK family has varying associations with patient survival in different cancers with tumor-suppressive and tumor-promoting effects being tissue-dependent
Obesity and leptin in breast cancer angiogenesis
At the time of breast cancer diagnosis, most patients meet the diagnostic criteria to be classified as obese or overweight. This can significantly impact patient outcome: breast cancer patients with obesity (body mass index > 30) have a poorer prognosis compared to patients with a lean BMI. Obesity is associated with hyperleptinemia, and leptin is a well-established driver of metastasis in breast cancer. However, the effect of hyperleptinemia on angiogenesis in breast cancer is less well-known. Angiogenesis is an important process in breast cancer because it is essential for tumor growth beyond 1mm3 in size as well as cancer cell circulation and metastasis. This review investigates the role of leptin in regulating angiogenesis, specifically within the context of breast cancer and the associated tumor microenvironment in obese patients
ZEB2 regulates endocrine therapy sensitivity and metastasis in luminal a breast cancer cells through a non-canonical mechanism
PURPOSE: The transcription factors ZEB1 and ZEB2 mediate epithelial-to-mesenchymal transition (EMT) and metastatic progression in numerous malignancies including breast cancer. ZEB1 and ZEB2 drive EMT through transcriptional repression of cell-cell junction proteins and members of the tumor suppressive miR200 family. However, in estrogen receptor positive (ER +) breast cancer, the role of ZEB2 as an independent driver of metastasis has not been fully investigated.
METHODS: In the current study, we induced exogenous expression of ZEB2 in ER + MCF-7 and ZR-75-1 breast cancer cell lines and examined EMT gene expression and metastasis using dose-response qRT-PCR, transwell migration assays, proliferation assays with immunofluorescence of Ki-67 staining. We used RNA sequencing to identify pathways and genes affected by ZEB2 overexpression. Finally, we treated ZEB2-overexpressing cells with 17β-estradiol (E2) or ICI 182,780 to evaluate how ZEB2 affects estrogen response.
RESULTS: Contrary to expectation, we found that ZEB2 did not increase canonical epithelial nor decrease mesenchymal gene expressions. Furthermore, ZEB2 overexpression did not promote a mesenchymal cell morphology. However, ZEB1 and ZEB2 protein expression induced significant migration of MCF-7 and ZR-75-1 breast cancer cells in vitro and MCF-7 xenograft metastasis in vivo. Transcriptomic (RNA sequencing) pathway analysis revealed alterations in estrogen signaling regulators and pathways, suggesting a role for ZEB2 in endocrine sensitivity in luminal A breast cancer. Expression of ZEB2 was negatively correlated with estrogen receptor complex genes in luminal A patient tumors. Furthermore, treatment with 17β-estradiol (E2) or the estrogen receptor antagonist ICI 182,780 had no effect on growth of ZEB2-overexpressing cells.
CONCLUSION: ZEB2 is a multi-functional regulator of drug sensitivity, cell migration, and metastasis in ER + breast cancer and functions through non-canonical mechanisms
The Bs20x22 anti-CD20-CD22 bispecific antibody has more lymphomacidal activity than do the parent antibodies alone
Previous studies have shown that bispecific antibodies that target both CD20 and CD22 have in vivo lymphomacidal properties. We developed a CD20-CD22 bispecific antibody (Bs20x22) from anti-CD20 and the anti-CD22 monoclonal antibodies (mAb), rituximab and HB22.7, respectively. Bs20x22 was constructed using standard methods and was shown to specifically bind CD20 and CD22. In vitro cytotoxicity assays showed that Bs20x22 was three times more effective than either parent mAb alone and twice as effective as a combination of both parent mAb used at equimolar concentrations. Bs20x22 was also nearly four times more effective at inducing apoptosis than either mAb alone. Examination of the MAPK and SAPK signaling cascades revealed that Bs20x22 induced significantly more p38 phosphorylation than either mAb alone. In an in vivo human NHL xenograft model, treatment with Bs20x22 resulted in significantly greater tumor shrinkage and improved overall survival when compared to either mAb alone or treatment with a combination of HB22.7 and rituximab. The effect of the initial tumor volume was assessed by comparing the efficacy of Bs20x22 administered before xenografts grew versus treatment of established tumors; significantly, greater efficacy was found when treatment was initiated before tumors could become established
Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration
Evaluation of genotoxic and cytotoxic effects of hydroalcoholic extract of Euphorbia tirucalli (Euphorbiaceae) in cell cultures of human leukocytes
ABSTRACT Euphorbia tirucalli (L.), commonly known as aveloz, has been indiscriminately used in popular medicine to treat various illnesses. However, some components can have devastating consequences. Injury to a cell's genetic material can cause mutations, cancer, and cell death. Our main goal in this work was to evaluate the genotoxic and cytotoxic effects of E. tirucalli extract on human leukocytes. For this purpose, we performed a phytochemical analysis to evaluate the plant's components. In the second step, we treated cultured human leukocytes with different concentrations of the dry extract of the plant and then evaluated the oxidative and genotoxic profiles of these leukocytes. We found that at 1% and 10% concentrations, the aveloz extract acted as a genotoxic agent that could damage DNA and increase oxidative damage. We conclude that despite its popular use, aveloz can act as a genotoxic agent, especially when it contains phorbol ester. Aveloz's indiscriminate use might actually promote tumors and therefore carry a considerable genetic risk for its users
Governance and Conservation Effectiveness in Protected Areas and Indigenous and Locally Managed Areas
Increased conservation action to protect more habitat and species is fueling a vigorous debate about the relative effectiveness of different sorts of protected areas. Here we review the literature that compares the effectiveness of protected areas managed by states and areas managed by Indigenous peoples and/or local communities. We argue that these can be hard comparisons to make. Robust comparative case studies are rare, and the epistemic communities producing them are fractured by language, discipline, and geography. Furthermore the distinction between these different forms of protection on the ground can be blurred. We also have to be careful about the value of this sort of comparison as the consequences of different forms of conservation for people and nonhuman nature are messy and diverse. Measures of effectiveness, moreover, focus on specific dimensions of conservation performance, which can omit other important dimensions. With these caveats, we report on findings observed by multiple study groups focusing on different regions and issues whose reports have been compiled into this article. There is a tendency in the data for community-based or co-managed governance arrangements to produce beneficial outcomes for people and nature. These arrangements are often accompanied by struggles between rural groups and powerful states. Findings are highly context specific and global generalizations have limited value
Preliminary in vitro assessment of the potential toxicity and antioxidant activity of Ceiba speciosa (A. St.-Hill) Ravenna (Paineira)
ABSTRACT The bark tea of Ceiba speciosa, a tropical tree of the Malvaceae family, is used in the Northwestern Region of Rio Grande do Sul state, Brazil, to reduce blood cholesterol levels. However, there are no scientific data on the efficacy and safety of this plant. The aim of the present study was to evaluate the in vitro antioxidant and toxic potential of bark extracts of C. speciosa. We performed a preliminary phytochemical analysis by high-performance liquid chromatography-diode array detection (HPLC-DAD) and evaluated the oxidative damage to proteins and lipids, the radical scavenging effect, and genotoxicity of the lyophilized aqueous extract (LAECs) and the precipitate obtained from the raw ethanol extract (Cs1). The phytochemical profile demonstrated the presence of phenolic and flavonoid compounds. The LAECs and Cs1 prevented damage to lipids and proteins at concentrations of 50 and 10 µg/mL. They also showed a scavenging effect on 2,2-diphenyl-1-pricril-hydrazyl (DPPH) radicals in a concentration-dependent manner. Furthermore, no genotoxic effect was observed at concentrations of 10, 5 and 2 µg/mL in the Comet assay. The present study is the first evaluation regarding the characterization of C. speciosa and its safety, and the results demonstrate its antioxidant potential and suggest that its therapeutic use may be relatively safe
- …
