1,142 research outputs found

    Trustee: A Trust Management System for Fog-enabled Cyber Physical Systems

    Get PDF
    In this paper, we propose a lightweight trust management system (TMS) for fog-enabled cyber physical systems (Fog-CPS). Trust computation is based on multi-factor and multi-dimensional parameters, and formulated as a statistical regression problem which is solved by employing random forest regression model. Additionally, as the Fog-CPS systems could be deployed in open and unprotected environments, the CPS devices and fog nodes are vulnerable to numerous attacks namely, collusion, self-promotion, badmouthing, ballot-stuffing, and opportunistic service. The compromised entities can impact the accuracy of trust computation model by increasing/decreasing the trust of other nodes. These challenges are addressed by designing a generic trust credibility model which can countermeasures the compromise of both CPS devices and fog nodes. The credibility of each newly computed trust value is evaluated and subsequently adjusted by correlating it with a standard deviation threshold. The standard deviation is quantified by computing the trust in two configurations of hostile environments and subsequently comparing it with the trust value in a legitimate/normal environment. Our results demonstrate that credibility model successfully countermeasures the malicious behaviour of all Fog-CPS entities i.e. CPS devices and fog nodes. The multi-factor trust assessment and credibility evaluation enable accurate and precise trust computation and guarantee a dependable Fog-CPS system

    Investigation of single beam near-infrared free space optical communication under different weather anomalies

    Get PDF
    The Free space optics (FSO) is a wireless optical communication system that connects directly to the atmosphere, where the connection is established between transmitter and receiver within in the line of sight. The FSO poses a high-speed broadband, which is the last mile wireless optical communication, deployed relatively fast. However, there are some weather factors may affect the performance of FSO transmission. In this paper, we analyzed the performance of Non-Return to Zero (NRZ) modulation schemes, which is used in FSO communication under extreme weather conditions over a range of 2Km. The performance has been analyzed under 980nm wavelength, Bit Error Rate (BER), and Q-factor using Opt system. The largest attenuation measured is 340dB/Km, correlate to the visibility of 50m. In addition the visibility exceeding about 50m, The Kruse formula provides a good measurement of optical attenuation over long distances under the clear weather and haze conditions respectively

    Phase behaviour of dehydrated phosphatidylcholines

    Get PDF
    Dehydrated DLPC, DMPC, DPPC and DSPC have been characterised at temperatures below the diacyl carbon chain-melting transition (Tm), using DSC. For the first time, the existence of pre-Tm transition processes, which are, usually, only observed in the colloidal/liposomal state of saturated phospholipids have been detected for the dehydrated phosphatidylcholines. Temperature modulated differential scanning calorimetry (TMDSC) was used to characterize the several complex, overlapping pre-Tm transition processes. Kinetic studies of the chain-melting (Tm) transition show the activation energy dependence on α (conversion rate) i.e. activation energy decreases as the transition progresses, pointing to the importance of initial cooperative (intra- and inter-molecular) mobility. Furthermore the activation energy increases with increase in diacyl chain length of the phosphatidylcholines which supports the finding that greater molecular interactions of the polymer chain and its head groups in the dehydrated solid state lead to enhanced stability of dehydrated phosphatidylcholines

    Neuronal branching is increasingly asymmetric near synapses, potentially enabling plasticity while minimizing energy dissipation and conduction time

    Get PDF
    Neurons' primary function is to encode and transmit information in the brain and body. The branching architecture of axons and dendrites must compute, respond and make decisions while obeying the rules of the substrate in which they are enmeshed. Thus, it is important to delineate and understand the principles that govern these branching patterns. Here, we present evidence that asymmetric branching is a key factor in understanding the functional properties of neurons. First, we derive novel predictions for asymmetric scaling exponents that encapsulate branching architecture associated with crucial principles such as conduction time, power minimization and material costs. We compare our predictions with extensive data extracted from images to associate specific principles with specific biophysical functions and cell types. Notably, we find that asymmetric branching models lead to predictions and empirical findings that correspond to different weightings of the importance of maximum, minimum or total path lengths from the soma to the synapses. These different path lengths quantitatively and qualitatively affect energy, time and materials. Moreover, we generally observe that higher degrees of asymmetric branching-potentially arising from extrinsic environmental cues and synaptic plasticity in response to activity-occur closer to the tips than the soma (cell body)

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression

    Get PDF
    Upon translation, the N-terminal homology box 1 (NHB1) signal anchor sequence of Nrf1 integrates it within the endoplasmic reticulum (ER) whilst its transactivation domains [TADs, including acidic domain 1 (AD1), the flanking Asn/Ser/Thr-rich (NST) domain and AD2] are transiently translocated into the ER lumen, whereupon the NST domain is glycosylated to yield an inactive 120-kDa glycoprotein. Subsequently, these TADs are retrotranslocated into extra-luminal subcellular compartments, where Nrf1 is deglycosylated to yield an active 95-kDa isoform. Herein, we report that AD1 and AD2 are required for the stability of the 120-kDa Nrf1 glycoprotein, but not that of the non-glycosylated/de-glycosylated 95-kDa isoform. Degrons within AD1 do not promote proteolytic degradation of the 120-kDa Nrf1 glycoprotein. However, repositioning of AD2-adjoining degrons (i.e. DSGLS-containing SDS1 and PEST2 sequences) into the cyto/nucleoplasm enables selective topovectorial processing of Nrf1 by the proteasome and/or calpains to generate a cleaved active 85-kDa Nrf1 or a dominant-negative 36-kDa Nrf1γ. Production of Nrf1γ is abolished by removal of SDS1 or PEST2 degrons, whereas production of the cleaved 85-kDa Nrf1 is blocked by deletion of the ER luminal-anchoring NHB2 sequence (aa 81–106). Importantly, Nrf1 activity is positively and/or negatively regulated by distinct doses of proteasome and calpain inhibitors
    corecore