390 research outputs found

    Standard Transistor Array (STAR). Volume 1: Placement technique

    Get PDF
    A large scale integration (LSI) technology, the standard transistor array uses a prefabricated understructure of transistors and a comprehensive library of digital logic cells to allow efficient fabrication of semicustom digital LSI circuits. The cell placement technique for this technology involves formation of a one dimensional cell layout and "folding" of the one dimensional placement onto the chip. It was found that, by use of various folding methods, high quality chip layouts can be achieved. Methods developed to measure of the "goodness" of the generated placements include efficient means for estimating channel usage requirements and for via counting. The placement and rating techniques were incorporated into a placement program (CAPSTAR). By means of repetitive use of the folding methods and simple placement improvement strategies, this program provides near optimum placements in a reasonable amount of time. The program was tested on several typical LSI circuits to provide performance comparisons both with respect to input parameters and with respect to the performance of other placement techniques. The results of this testing indicate that near optimum placements can be achieved by use of the procedures incurring severe time penalties

    Dark Energy: Recent Developments

    Get PDF
    A six parameter cosmological model, involving a vacuum energy density that is extremely tiny compared to fundamental particle physics scales, describes a large body of increasingly accurate astronomical data. In a first part of this brief review we summarize the current situation, emphasizing recent progress. An almost infinitesimal vacuum energy is only the simplest candidate for a cosmologically significant nearly homogeneous exotic energy density with negative pressure, generically called Dark Energy. If general relativity is assumed to be also valid on cosmological scales, the existence of such a dark energy component that dominates the recent universe is now almost inevitable. We shall discuss in a second part the alternative possibility that general relativity has to be modified on distances comparable to the Hubble scale. It will turn out that observational data are restricting theoretical speculations more and more. Moreover, some of the recent proposals have serious defects on a fundamental level (ghosts, acausalities, superluminal fluctuations).Comment: 19 pages, 5 figures, invited ``brief review'' for Modern Physics Letters A; to appea

    The Quantum Mechanics of Hyperion

    Full text link
    This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76, 186 (1998)] that the chaotic tumbling of the satellite Hyperion would become non-classical within 20 years, but for the effects of environmental decoherence. The dynamics of quantum and classical probability distributions are compared for a satellite rotating perpendicular to its orbital plane, driven by the gravitational gradient. The model is studied with and without environmental decoherence. Without decoherence, the maximum quantum-classical (QC) differences in its average angular momentum scale as hbar^{2/3} for chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC differences for a macroscopic object like Hyperion. The quantum probability distributions do not approach their classical limit smoothly, having an extremely fine oscillatory structure superimposed on the smooth classical background. For a macroscopic object, this oscillatory structure is too fine to be resolved by any realistic measurement. Either a small amount of smoothing (due to the finite resolution of the apparatus) or a very small amount of environmental decoherence is sufficient ensure the classical limit. Under decoherence, the QC differences in the probability distributions scale as (hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that decoherence is not essential to explain the classical behavior of macroscopic bodies.Comment: 17 pages, 24 figure

    Celestial mechanics in Kerr spacetime

    Get PDF
    The dynamical parameters conventionally used to specify the orbit of a test particle in Kerr spacetime are the energy EE, the axial component of the angular momentum, LzL_{z}, and Carter's constant QQ. These parameters are obtained by solving the Hamilton-Jacobi equation for the dynamical problem of geodesic motion. Employing the action-angle variable formalism, on the other hand, yields a different set of constants of motion, namely, the fundamental frequencies ωr\omega_{r}, ωθ\omega_{\theta} and ωϕ\omega_{\phi} associated with the radial, polar and azimuthal components of orbital motion. These frequencies, naturally, determine the time scales of orbital motion and, furthermore, the instantaneous gravitational wave spectrum in the adiabatic approximation. In this article, it is shown that the fundamental frequencies are geometric invariants and explicit formulas in terms of quadratures are derived. The numerical evaluation of these formulas in the case of a rapidly rotating black hole illustrates the behaviour of the fundamental frequencies as orbital parameters such as the semi-latus rectum pp, the eccentricity ee or the inclination parameter θ\theta_{-} are varied. The limiting cases of circular, equatorial and Keplerian motion are investigated as well and it is shown that known results are recovered from the general formulas.Comment: 25 pages (LaTeX), 5 figures, submitted to Class. Quantum Gra

    Cosmic Evolution with Early and Late Acceleration Inspired by Dual Nature of the Ricci Scalar Curvature

    Full text link
    In the present paper, it is found that dark energy emerges spontaneously from the modified gravity. According to cosmological scenario, obtained here, the universe inflates for 1037\sim 10^{-37} sec. in the beginning and late universe accelerates after 8.58 Gyrs. During the long intermediate period, it decelerates driven by radiation and subsequently by matter. Emerged gravitational dark energy mimics quintessence and its density falls by 115 orders from its initial value 2.58×1068GeV42.58\times 10^{68} {\rm GeV}^4 to its current value 2.19×1047GeV42.19\times 10^{-47} {\rm GeV}^4 .Comment: 40 pages. To appearin Int. J. Mod. Phys.

    A review of research into business coaching supervision

    Get PDF
    A systematic search of the coaching literature for original peer-reviewed studies into business coaching supervision yielded seven research reports. Evaluation of these studies showed them to be low in the reporting of methodological rigour. However, as an emerging area of research with great importance for the development of the profession of business coaching these studies provide valuable insights into the functions of supervision and its benefits. Gaps in knowledge and directions for future research are identified. There is a need for future research to be more rigorous in its reporting of methods and analytic procedures, small scale qualitative research that can provide insight into the issues and challenges of coaching supervision in specific contexts, and large scale quantitative research which can provide broader and generalizable understandings into the uses and benefits of supervision

    Vascular Endothelial Growth Factor-Related Pathways in Hemato-Lymphoid Malignancies

    Get PDF
    Angiogenesis is essential for malignant tumor growth. This has been documented for solid tumors, and there is an emerging evidence suggesting that tumor progression of hematolymphoid malignancies also depends on the induction of new blood vessel formation. The most important proangiogenic agent is vascular endothelial growth factor (VEGF), activating VEGF receptors 1 and 2. The available data on angiogenesis in hemato-lymphoid malignancies, such as acute leukemias, myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma, and lymphomas, point towards the significance of autocrine and paracrine VEGF-mediated effects for proliferation and survival of leukemia/lymphoma cells in addition to tumor vascularization. Antiangiogenic strategies have become an important therapeutic modality for solid tumors. Several antiangiogenic agents targeting VEGF-related pathways are also being utilized in clinical trials for the treatment of hemato-lymphoid malignancies, and in some instances these pathways have emerged as promising therapeutic targets. This review summarizes recent advances in the basic understanding of the role of angiogenesis in hemato-lymphoid malignancies and the translation of such basic findings into clinical studies

    Target mass number dependence of subthreshold antiproton production in proton-, deuteron- and alpha-particle-induced reactions

    Full text link
    Data from KEK on subthreshold \bar{\mrm{p}} as well as on π±\pi^\pm and \mrm{K}^\pm production in proton-, deuteron- and α\alpha-induced reactions at energies between 2.0 and 12.0 A GeV for C, Cu and Pb targets are described within a unified approach. We use a model which considers a nuclear reaction as an incoherent sum over collisions of varying numbers of projectile and target nucleons. It samples complete events and thus allows for the simultaneous consideration of all final particles including the decay products of the nuclear residues. The enormous enhancement of the \bar{\mrm{p}} cross section, as well as the moderate increase of meson production in deuteron and α\alpha induced compared to proton-induced reactions, is well reproduced for all target nuclei. In our approach, the observed enhancement near the production threshold is mainly due to the contributions from the interactions of few-nucleon clusters by simultaneously considering fragmentation processes of the nuclear residues. The ability of the model to reproduce the target mass dependence may be considered as a further proof of the validity of the cluster concept.Comment: 9 pages, 4 figure

    Phenomenological analysis of K+ meson production in proton-nucleus collisions

    Get PDF
    Total and differential cross sections from literature, on the production of K+ mesons in pA interactions at projectile energies between T=0.8 and 2.9 GeV, covering the transition across the free nucleon-nucleon threshold at 1.58 GeV, have been investigated. From the target-mass dependence of the production cross sections no evidence for the expected change of the dominant reaction mechanism from two-step to direct kaon production was found. At T=1.0 GeV the A dependences of the total cross sections and of the most recent data from COSY-Juelich, differential cross sections measured under forward angles, are strongly different. The invariant K+ production cross sections show an overall exponential scaling behavior with the squared four-momentum transfer between the beam proton and the produced K+ meson for t< -0.05 GeV^2 independent of the beam energy and emission angle. The data from COSY-Juelich reveal a strongly different t dependence in the region of t>0 GeV^2. Further data at forward angles and different beam energies should be taken in order to explore this region of kinematically extreme conditions.Comment: 9 Pages, 11 Figure
    corecore