6,722 research outputs found

    The VELO High Voltage System Control Software

    Get PDF
    This note describes the VELO high voltage control software. The implementation of its structure as a PVSS Finite State Machine is emphasized. The main error conditions that may occur during operation is also discussed. The VELO HV software conforms to the specification of the VELO

    A new generation photodetector for astroparticle physics: the VSiPMT

    Get PDF
    The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design we proposed for a revolutionary photon detector. The main idea is to replace the classical dynode chain of a PMT with a SiPM (G-APD), the latter acting as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performance of the SiPM technology. The VSiPMT has many attractive features. In particular, a low power consumption and an excellent photon counting capability. To prove the feasibility of the idea we first tested the performance of a special non-windowed SiPM by Hamamatsu (MPPC) as electron detector and current amplifier. Thanks to this result Hamamatsu realized two VSiPMT industrial prototypes. In this work, we present the results of a full characterization of the VSiPMT prototype

    Performance of the LHCb muon system

    Full text link
    The performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at ps = 7 TeV energy is studied. The optimization of the detector setting and the time calibration performed with the first collisions delivered by LHC is described. Particle rates, measured for the wide range of luminosities and beam operation conditions experienced during the run, are compared with the values expected from simulation. The space and time alignment of the detectors, chamber efficiency, time resolution and cluster size are evaluated. The detector performance is found to be as expected from specifications or better. Notably the overall efficiency is well above the design requirementsComment: JINST_015P_1112 201

    Nanoscale modulation of the density of states at the conducting interface between LaAlO3 and SrTiO3 band insulators

    Get PDF
    The appearance of high-mobility electrons at the LaAlO3/SrTiO3 interface has raised strong interest in the material science community and a lively debate on the origin of the phenomenon. A possible explanation is an electronic reconstruction, realizing a transfer of electrons to SrTiO3 at the interface, thereby avoiding the build-up of excessive Coulomb energy as described by the "polarization catastrophe" associated with the alternating polar layers of the LaAlO3 film. Theoretical models predict that electrons are transferred into titanium 3d(xy) interface states and, in the presence of strong correlations, generate a charge and orbital order. Here we provide experimental evidence that at room temperature the local density of states of the LaAlO3/SrTiO3 conducting interface is modulated at the nanoscale in a short-range quasiperiodic pattern, which is consistent with the appearance of an orbital (short-range) order. This result, together with the splitting of the 3d states, confirms that an electronic reconstruction drives the functional properties of the LaAlO3/SrTiO3 oxide interface. The short-range superstructure does not fully agree with the theoretical predictions. Thus, further experimental and theoretical investigations are required to understand the electronic properties of the 2D electron system realised at the LaAlO3/SrTiO3 interface

    Symmetry breaking at the (111) interfaces of SrTiO3{_3} hosting a 2D-electron system

    Get PDF
    We used x-ray absorption spectroscopy to study the orbital symmetry and the energy band splitting of (111) LaAlO3{_3}/SrTiO3{_3} and LaAlO3{_3}/EuTiO3{_3}/SrTiO3{_3} heterostructures, hosting a quasi two-dimensional electron system (q2DES), and of a Ti-terminated (111) SrTiO3{_3} single crystal, also known to form a q2DES at its surface. We demonstrate that the bulk tetragonal Ti-3d D4{_4}h{_h} crystal field is turned into trigonal D3{_3}d{_d} crystal field in all cases. The symmetry adapted a1{_1}g{_g} and egπ{^\pi_g} orbitals are non-degenerate in energy and their splitting, \Delta, is positive at the bare STO surface but negative in the heterostructures, where the a1{_1}g{_g} orbital is lowest in energy. These results demonstrate that the interfacial symmetry breaking induced by epitaxial engineering of oxide interfaces has a dramatic effect on their electronic properties, and it can be used to manipulate the ground state of the q2DES.Comment: 6 pages article, plus 5 pages supplementary informatio

    Leading order analysis of neutrino induced dimuon events in the CHORUS experiment

    Get PDF
    We present a leading order QCD analysis of a sample of neutrino induced charged-current events with two muons in the final state originating in the lead-scintillating fibre calorimeter of the CHORUS detector. The results are based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign dimuon events collected during the exposure of the detector to the CERN Wide Band Neutrino Beam between 1995 and 1998. % with Eμ1,Eμ2>5E_{\mu 1},E_{\mu 2} > 5 GeV and Q2>3Q^2 > 3 GeV2^2 collected %between 1995 and 1998. The analysis yields a value of the charm quark mass of \mc = (1.26\pm 0.16 \pm 0.09) \GeVcc and a value of the ratio of the strange to non-strange sea in the nucleon of κ=0.33±0.05±0.05\kappa = 0.33 \pm 0.05 \pm 0.05, improving the results obtained in similar analyses by previous experiments.Comment: Submitted to Nuclear Physics

    Two-dimensional electron gas at the (001) surface of ferromagnetic EuTiO3

    Get PDF
    Studies on oxide quasi-two-dimensional electron gas (q2DEG) have been a playground for the discovery of novel and sometimes unexpected phenomena, like the reported magnetism at the surface of SrTiO3 (001) and at the interface between nonmagnetic LaAlO3 and SrTiO3 band insulators. However, magnetism in this system is weak and there is evidence of a nonintrinsic origin. Here, by using in situ high-resolution angle-resolved photoemission, we demonstrate that ferromagnetic EuTiO3, the magnetic counterpart of SrTiO3 in the bulk, hosts a q2DEG at its (001) surface. This is confirmed by density functional theory calculations with Hubbard U terms in the presence of oxygen divacancies in various configurations, all of them leading to a spin-polarized q2DEG related to the ferromagnetic order of Eu-4f magnetic moments. The results suggest EuTiO3(001) as a new material platform for oxide q2DEGs, characterized by broken inversion and time-reversal symmetries

    Performance of the LHCb muon system with cosmic rays

    Full text link
    The LHCb Muon system performance is presented using cosmic ray events collected in 2009. These events allowed to test and optimize the detector configuration before the LHC start. The space and time alignment and the measurement of chamber efficiency, time resolution and cluster size are described in detail. The results are in agreement with the expected detector performance.Comment: Submitted to JINST and accepte

    Associated Charm Production in Neutrino-Nucleus Interactions

    Full text link
    In this paper a search for associated charm production both in neutral and charged current ν\nu-nucleus interactions is presented. The improvement of automatic scanning systems in the {CHORUS} experiment allows an efficient search to be performed in emulsion for short-lived particles. Hence a search for rare processes, like the associated charm production, becomes possible through the observation of the double charm-decay topology with a very low background. About 130,000 ν\nu interactions located in the emulsion target have been analysed. Three events with two charm decays have been observed in the neutral-current sample with an estimated background of 0.18±\pm0.05. The relative rate of the associated charm cross-section in deep inelastic ν\nu interactions, σ(ccˉν)/σNCDIS=(3.622.42+2.95(stat)±0.54(syst))×103\sigma(c\bar{c}\nu)/\sigma_\mathrm{NC}^\mathrm{DIS}= (3.62^{+2.95}_{-2.42}({stat})\pm 0.54({syst}))\times 10^{-3} has been measured. One event with two charm decays has been observed in charged-current νμ\nu_\mu interactions with an estimated background of 0.18±\pm0.06 and the upper limit on associated charm production in charged-current interactions at 90% C.L. has been found to be σ(ccˉμ)/σCC<9.69×104\sigma (c\bar{c} \mu^-)/\sigma_\mathrm{CC} < 9.69 \times 10^{-4}.Comment: 10 pages, 4 figure
    corecore