376 research outputs found

    A theory of L1L^1-dissipative solvers for scalar conservation laws with discontinuous flux

    Full text link
    We propose a general framework for the study of L1L^1 contractive semigroups of solutions to conservation laws with discontinuous flux. Developing the ideas of a number of preceding works we claim that the whole admissibility issue is reduced to the selection of a family of "elementary solutions", which are certain piecewise constant stationary weak solutions. We refer to such a family as a "germ". It is well known that (CL) admits many different L1L^1 contractive semigroups, some of which reflects different physical applications. We revisit a number of the existing admissibility (or entropy) conditions and identify the germs that underly these conditions. We devote specific attention to the anishing viscosity" germ, which is a way to express the "Γ\Gamma-condition" of Diehl. For any given germ, we formulate "germ-based" admissibility conditions in the form of a trace condition on the flux discontinuity line x=0x=0 (in the spirit of Vol'pert) and in the form of a family of global entropy inequalities (following Kruzhkov and Carrillo). We characterize those germs that lead to the L1L^1-contraction property for the associated admissible solutions. Our approach offers a streamlined and unifying perspective on many of the known entropy conditions, making it possible to recover earlier uniqueness results under weaker conditions than before, and to provide new results for other less studied problems. Several strategies for proving the existence of admissible solutions are discussed, and existence results are given for fluxes satisfying some additional conditions. These are based on convergence results either for the vanishing viscosity method (with standard viscosity or with specific viscosities "adapted" to the choice of a germ), or for specific germ-adapted finite volume schemes

    Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap

    Full text link
    We study the numerical resolution of the time-dependent Gross-Pitaevskii equation, a non-linear Schroedinger equation used to simulate the dynamics of Bose-Einstein condensates. Considering condensates trapped in harmonic potentials, we present an efficient algorithm by making use of a spectral Galerkin method, using a basis set of harmonic oscillator functions, and the Gauss-Hermite quadrature. We apply this algorithm to the simulation of condensate breathing and scissors modes.Comment: 23 pages, 5 figure

    Homogeneous Gold Catalysis through Relativistic Effects: Addition of Water to Propyne

    Full text link
    In the catalytic addition of water to propyne the Au(III) catalyst is not stable under non-relativistic conditions and dissociates into a Au(I) compound and Cl2. This implies that one link in the chain of events in the catalytic cycle is broken and relativity may well be seen as the reason why Au(III) compounds are effective catalysts.Comment: 12 pages, 3 figures, 1 tabl

    Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms

    Full text link
    We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant α\alpha. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an L1L^1 function and compute the effective charge of the system, recovering the usual renormalization of charge: the physical coupling constant is related to α\alpha by the formula αphysα(1+2α/(3π)logΛ)1\alpha_{\rm phys}\simeq \alpha(1+2\alpha/(3\pi)\log\Lambda)^{-1}, where Λ\Lambda is the ultraviolet cut-off. We eventually prove an estimate on the highest number of electrons which can be bound by a nucleus of charge ZZ. In the nonrelativistic limit, we obtain that this number is 2Z\leq 2Z, recovering a result of Lieb. This work is based on a series of papers by Hainzl, Lewin, Sere and Solovej on the mean-field approximation of no-photon QED.Comment: 37 pages, 1 figur

    A Cell-Centred CVD-MPFA Finite Volume Method for Two-Phase Fluid Flow Problems with Capillary Heterogeneity and Discontinuity

    Get PDF
    A novel finite-volume method is presented for porous media flow simulation that is applicable to discontinuous capillary pressure fields. The method crucially retains the optimal single of freedom per control-volume being developed within the flux-continuous control-volume distributed multi-point flux approximation (CVD-MPFA) framework (Edwards and Rogers in Comput Geosci 02(04):259–290, 1998; Friis et al. in SIAM J Sci Comput 31(02):1192–1220, 2008) . The new methods enable critical subsurface flow processes involving oil and gas trapping to be correctly resolved on structured and unstructured grids. The results demonstrate the ability of the method to resolve flow with oil/gas trapping in the presence of a discontinuous capillary pressure field for diagonal and full-tensor permeability fields. In addition to an upwind approximation for the saturation equation flux, the importance of upwinding on capillary pressure flux via a novel hybrid formulation is demonstrated

    Dynamic Allostery in the Methionine Repressor Revealed by Force Distribution Analysis

    Get PDF
    Many fundamental cellular processes such as gene expression are tightly regulated by protein allostery. Allosteric signal propagation from the regulatory to the active site requires long-range communication, the molecular mechanism of which remains a matter of debate. A classical example for long-range allostery is the activation of the methionine repressor MetJ, a transcription factor. Binding of its co-repressor SAM increases its affinity for DNA several-fold, but has no visible conformational effect on its DNA binding interface. Our molecular dynamics simulations indicate correlated domain motions within MetJ, and quenching of these dynamics upon SAM binding entropically favors DNA binding. From monitoring conformational fluctuations alone, it is not obvious how the presence of SAM is communicated through the largely rigid core of MetJ and how SAM thereby is able to regulate MetJ dynamics. We here directly monitored the propagation of internal forces through the MetJ structure, instead of relying on conformational changes as conventionally done. Our force distribution analysis successfully revealed the molecular network for strain propagation, which connects collective domain motions through the protein core. Parts of the network are directly affected by SAM binding, giving rise to the observed quenching of fluctuations. Our results are in good agreement with experimental data. The force distribution analysis suggests itself as a valuable tool to gain insight into the molecular function of a whole class of allosteric proteins

    A quantum-chemical study of the binding ability of βXaaHisGlyHis towards copper(II) ion

    Get PDF
    The present study analyzed binding of Cu2+ to tetrapeptides in water solution at several levels of theoretical approximation. The methods used to study the energetic and structural properties of the complexes in question include semiempirical hamiltonians, density functional theory as well as ab initio approaches including electron correlation effects. In order to shed light on the character of interactions between Cu2+ and peptides, which are expected to be mainly electrostatic in nature, decomposition of interaction energy into physically meaningful components was applied
    corecore