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A cell-centred CVD-MPFA finite-volume method for two-phase fluid
flow problems with capillary heterogeneity and discontinuity
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Abstract A novel finite-volume method is presented that is applicable to discontinuous capillary pres-
sure fields. The method is developed within the control-volume distributed multi-point flux approximation
(CVD-MPFA) framework (Edwards and Rogers, 1998; Friis et al, 2008). Results are computed on struc-
tured and unstructured grids that demonstrate the ability of the method to resolve flow in the presence of
a discontinuous capillary pressure field for diagonal and full-tensor permeability fields. In addition to an
upwind approximation for the saturation equation flux, the importance of upwinding on capillary pressure
flux via a hybrid formulation is shown.

Keywords Finite-volume · CVD-MPFA · two-phase · capillary pressure · heterogeneity · discontinuity ·
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1 Introduction

In this work, a new control-volume distributed multi-point flux approximation (CVD-MPFA) finite volume
method is developed for two-phase flow with a possibly heterogeneous and discontinuous capillary pressure
field, building on the framework of (Edwards and Rogers, 1998; Friis et al, 2008). The CVD-MPFA finite
volume formulation is an optimal approximation when compared to other methods, in that this formulation5

provides a flux-continuous locally conservative Darcy-flux approximation that is consistent for flow prob-
lems involving full-tensor permeability fields on structured and unstructured grids, while only depending
on a single degree of freedom (unknown) per flow variable per control-volume. These properties provide
the motivation for this CVD-MPFA development. Immiscible two-phase incompressible flow is governed by
a system of equations which involve a non-linear convection-diffusion equation for the saturation and an10

elliptic partial-differential-equation for phase pressure with a capillary pressure term on the right hand side.
Capillary pressure is the difference between non-wetting and wetting immiscible phase pressures across an
interface, and varies as a function of saturation throughout the field. The capillary pressure has a rock
property functional dependence on saturation defined by rock dependent capillary-saturation curves of the
porous medium. Each rock type, in the domain, has its own intrinsic rock properties, including local per-15

meability variation and local capillary pressure curves, that vary as a function of saturation. Brooks-Corey
and Van Genuchten are commonly used functions for capillary pressure (van Duijn and de Neef, 1998).
Capillary heterogeneity refers to a geological description where the domain consists of different rock types
that have different capillary-saturation curves. Varying rock properties can result in discontinuous capillary
pressure variation across neighbouring rock interfaces. Permeability heterogeneity, anisotropy, porosity and20

capillary heterogeneity can all have profound effects on local flow direction and behaviour. Preferential flow
directions and flow rates typically occur in regions of high permeability contrast, while capillary forces can
drastically change the nature of flow paths and cause the flow to spread and be more diffuse. Oil recovery
may be significantly reduced due to the effects of capillary heterogeneity, a phenomenon commonly referred
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to, as oil trapping (van Duijn et al, 1995; Brenner et al, 2013). Adjacent rocks may have different capillary-25

saturation curves, visual examples of capillary-saturation curves are given in Fig. 1c and Fig. 1d. For the
maximum saturation s = 1.0, the capillary pressure is known as the threshold pressure φt (also known as
entry pressure). The difference in the threshold capillary pressures of adjacent rocks decides continuity or
discontinuity of capillary pressures between the rocks.
Because of the importance of the capillary discontinuity, many authors have been working on this topic30

using various numerical methods. For example standard Galerkin and Petrov-Galerkin have been used by
Helmig and Huber (1998). Hoteit and Firoozabadi (2008) presented the mixed finite-element method for
the solution of discontinuous capillary pressure. The discontinuous-Galerkin method, presented in (Bastian,
2014), deals with discontinuous capillary pressure and numerical simulations are presented. The convergence
of finite-volume schemes accounting for discontinuous capillary pressure have been analysed in (Enchéry35

et al, 2006; Cancès, 2009). A cell-centred finite-volume scheme with two-point flux approximation (TPFA)
has been studied in (van Duijn et al, 1995; Brenner et al, 2013) in the context of discontinuous capillary
pressure. A cell-centred finite-volume method with multi-point flux approximation (L-method) is formu-
lated in (Wolff et al, 2013) for two-phase flow, however we have not been able to find a complete formulation
with description that includes discontinuous capillary pressure. Vertex-centred finite-volume schemes for40

capillary heterogeneities are presented in (Niessner et al, 2005; Papafotiou et al, 2010). More recent related
works include (Arbogast et al, 2013; Moortgat and Firoozabadi, 2013; Li and Tchelepi, 2015; Brenner et al,
2016; Hamon et al, 2018).
Here, we extend the cell-centred multi-point flux approximation (CVD-MPFA) with triangular pressure sup-
port (Friis et al, 2008) to approximate the capillary pressure flux while taking account of any discontinuity45

in capillary pressure.

2 Two-phase flow model

Two-phase flow consists of a wetting-phase and a non-wetting phase, that we assume here are water and oil
respectively. The flow equations are written in the Va fractional flow form (Hoteit and Firoozabadi, 2008)
in this work with the aqueous phase continuity equation written as:50

ϕ
∂s

∂t
+∇ · (fwva) = qw, (1)

where s = sw(x, t) is the water saturation, fw(s) = λw/Λ is the aqueous fractional flow which involves
the ratio of water mobility λw to the total mobility Λ = λw + λo. The rock permeability tensor, denoted
by k, is heterogeneous spatially varying and second rank in two-dimensions while φc, ϕ and qw are the
capillary pressure, porosity and the known aqueous source term respectively. Capillary pressure is the
difference between the non-wetting and wetting phase pressures i.e., φc = φo − φw. In this work gravity55

is omitted. Oil saturation so is deduced from the volume balance sw + so = 1. The velocity va is defined
as va = −ΛK∇φ where φ = φw is the aqueous phase pressure which is obtained by solving the pressure
equation:

−∇ · (ΛK∇φ) = ∇ · (λoK∇φc) + qw + qo (2)

which results from mass conservation and Darcy’s law, and for incompressible flow describes a divergence
free total velocity away from any (well) source, where vt = va + vc and vc = −λoK∇φc. In this work, the60

CVD-MPFA finite volume method (Edwards and Rogers, 1998; Friis et al, 2008) is developed to approximate
capillary pressure flux and compute the solution of the resulting phase pressure equation (2). The implicit-
pressure explicit-saturation (IMPES) method is employed for the solution of the coupled system of equations
(1) and (2) (Aziz and Settari, 1986). Here, a cell-centred first order upwind (Aziz and Settari, 1986) finite-
volume method is used for approximation of the convective flux of the saturation equation (1).65

The Va formulation proposed in (Hoteit and Firoozabadi, 2008; Friis and Evje, 2012; Bastian, 2014)
only involves explicit capillary flux discretisation on the right hand side of the pressure equation. The key
advantage of the Va formulation is that the capillary pressure does not appear explicitly in the saturation
equation since the flux is proportional to Va which depends on the gradient of the aqueous phase pressure,
which is an attractive simplification. The saturation equation employs an upwind flux with upwind direction70

defined by the local Va flux resolved on each control-volume facet, and with stability of the explicit update
of the saturation equation governed by a CFL condition based on the Va flux. In effect the Va flux is
comprised of a convection-diffusion flux, since capillary flux is indirectly embedded in the operator, which
is only seen when expressing Va in terms of Vt (see above), consequently the CFL is more restrictive due
to being based effectively on an artificial wave speed. We note that a Vt formulation using the actual wave75

speed together with the non-linear diffusive flux resulting from capillary pressure is presented in (Xie and
Edwards, 2017). Consistent with upwinding on Va, then the capillary flux in the divergence term on the
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right hand side of the pressure equation, is treated as an artificial wave speed, and the capillary flux oil-phase
mobility is upwinded according to the sign of the capillary flux resolved on each control-volume facet, which
is demonstrated (results section) to aid stability when capillary pressure is discontinuous. An analogous80

upwind approximation was proposed by (Hoteit and Firoozabadi, 2008). An example of the contrast between
using a centred approximation and the upwind approximation for capillary flux oil-phase mobility is also
presented in the results section. Instability of an explicit forward time centred approximation of convective
flux is well known e.g. LeVeque (1992), and instability resulting from using the centred oil-phase mobility
approximation is clearly seen c.f. section 6.5, in contrast to the stable upwind approximation results. The85

two types of upwinding used here on Va and capillary flux respectively, create a hybrid Va formulation. We
note that if gravity is present the Va formulation is only valid for convective dominant flow regimes (Xie
and Edwards, 2017). However since gravity is not considered here we use the above hybrid Va formulation.
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cell 1 cell 2

interface Γ

(a) Phase-pressure continuity on the interface between
adjacent cells
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interface Γ

(b) Discontinuous capillary pressure on the interface be-
tween adjacent cells
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(c) Capillary-saturation curves for two rocks with equal
threshold capillary pressures
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(d) Capillary-saturation curves for two rocks with dif-
ferent threshold capillary pressures

Fig. 1: Capillary heterogeneity across two rocks

3 Capillary interface conditions90

Two essential conditions of the CVD-MPFA method are (i) pressure continuity and (ii) flux-continuity
(Edwards and Rogers, 1998; Friis et al, 2008). When fluxes are approximated using the phase pressure φ
(left side of Eq. (2)), the phase pressure is always considered to be continuous on the interface between
two cells as shown in Fig. 1a. Thus interface pressure can be eliminated by the usual CVD-MPFA flux-
continuity conditions. But, when the fluxes involving capillary pressure are approximated (right side of
Eq. (2)), account must be taken of a possible discontinuous capillary pressure on the interface between two
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cells as shown in Fig. 1b. The discontinuity of the capillary pressure depends on the difference between
the threshold pressure of the adjacent cells that are associated with the different rock types. Consider two
cells, Fig. 1b, that belong to two different rock types 1 and 2 having the threshold pressures φt,1 and
φt,2, respectively. We consider φt,1 ≤ φt,2. The possible discontinuous capillary pressures on the sides of
the interface are denoted by φc,1Γ and φc,2Γ corresponding to cells 1 and 2, respectively. We have two
conditions for the approximation of capillary pressure flux on the two interface sides, following (van Duijn
et al, 1995; Bastian, 2014). The first condition is the essential flux-continuity condition, with analogous
treatment to that for the phase-pressure. The second condition is the extended pressure condition (van
Duijn et al, 1995) written as:

If φc,1Γ > φt,2 → continuity: φc,1Γ = φc,2Γ = φc,Γ ; (3)

φc,Γ is eliminated using flux-continuity

or

If φc,1Γ < φt,2 → discontinuity: φc,2Γ = φt,2; (4)

φc,1Γ is eliminated using flux-continuity

If condition (3) is satisfied on the interface then we employ continuity of capillary pressure, otherwise the
capillary pressure is discontinuous. When the capillary-saturation curves of the adjacent rocks are such
that the threshold pressures are equal as shown in Fig. 1c, the condition (3) is always satisfied for all
values of saturation implying that the capillary pressure is always continuous in this case. The resulting
continuous capillary pressure is eliminated by using the flux-continuity condition analogous to the case95

of phase-pressure. Now, consider a case when the adjacent rocks (e.g. 1 and 2 ) have capillary-saturation
curves such that the threshold pressures are different (φt,1 < φt,2) as shown in the Fig. 1d corresponding
to the cells in Fig. 1b. There is a threshold saturation s∗w for cell 1 such that the corresponding capillary
pressure is equal to the threshold pressure of cell 2 i.e. φc,1(s∗) = φt,2. Whenever the saturation in cell 1
is lower than the threshold saturation i.e. s1 ≤ s∗ (the corresponding capillary pressure on the interface in100

cell 1 is higher than the threshold pressure of cell 2 i.e. φc,1 ≥ φt,2), we have the condition (3) satisfied and
the capillary pressure across the interface is continuous. The continuous capillary pressure on the interface
is eliminated by using the condition of continuity of flux across the interface. Now, if the saturation in cell
1 is higher than the threshold saturation i.e. s1 > s∗ (the corresponding capillary pressure on the interface
in cell 1 is lower than the threshold pressure of cell 2 i.e. φc,1 < φt,2), we cannot satisfy the condition (3),105

so the capillary pressure on the cell 2 interface is imposed with the value equal to the threshold pressure
i.e. φc,2Γ = φt,2 and we eliminate φc,1Γ by using continuity of flux across the interface. In this way, we
treat a discontinuity in capillary pressure which depends on the saturation (and capillary pressure) across
the interface between the two cells.

4 CVD-MPFA phase-flux and capillary-flux approximation110

We approximate the pressure equation (2) using the finite volume CVD-MPFA method. The pressure
equation (2) is integrated over each grid cell control volume using the Gauss divergence theorem to obtain:

−
∫
∂Ωi

(Λk∇φ) · nidS =

∫
∂Ωi

(λok∇φc) · nidS +

∫
Ωi

qwdV +

∫
Ωi

qodV (5)

The discrete approximation of equation (5) is written in terms of the summation of the fluxes on all the
half-edges of the grid-cells:115

2Ne∑
i

ΛiFi =

2Ne∑
i

λoiFci + q̄ (6)

where,Ne is the total number of edges of the grid-cell (Ne = 3 for the triangle cell), q̄ =
∫
Ωi
qwdV +

∫
Ωi
qodV .

Fi and Fci are outward normal fluxes on a half-edge i of the grid-cell corresponding to the phase-pressure
and the capillary pressure, respectively. The fluxes Fi and Fci are approximated in terms of the respective
cell-centred phase and capillary pressures using the CVD-MPFA formulation (Friis et al, 2008). Details of
the new capillary flux approximation are given in the next subsection below. Here, we employ the symmetric120

positive definite (SPD) triangular pressure support CVD-MPFA scheme (Friis et al, 2008).
We now outline the flux construction. We work on a cluster of cells common to a given vertex and ap-
proximate the fluxes on all the cell half-edges common to that vertex following (Friis et al, 2008). Consider
a cluster of three cells common to the vertex V as shown in Fig. 2a. For the phase pressure fluxes, we
introduce auxiliary pressures on the interfaces, as shown in Fig. 2c and the phase pressure is continuous125

across the interfaces. Interface pressures and flux continuity quadrature points are defined by the parametric
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quadrature variation [0 < q ≤ 1] along each sub-interface, and for the SPD scheme q = 2/3 which defines
quadrature points positioned at 1/3 of the length of each triangle cell edge, Fig. 2c shows φA, φB , φC located
at the SPD quadrature points of the cluster. Triangle pressure support (TPS) is used where pressure has a
piecewise linear variation over each sub-cell triangle, e.g. over the triangle sub-cell 1 pressure is written in130

terms of barycentric coordinates (ξ, η) where:

φ = (1− ξ − η)φ1 + ξφA + ηφC

A piecewise constant pressure gradient vector is formed over each sub-cell from the pressure field, from
which the Darcy velocity vector can be determined in each sub-cell. The Darcy velocity is resolved along
the two outward sub-interface normals of the sub-cell. The normal flux at the left hand side of sub-interface
IA is given by velocity resolution along the normal vector dLh = 0.5((yV − yVA),−(xV − xVA))tr outward135

normal to cell 1:

F 1
IA = ṽa · dLh = −(T 1

11φξ + T 1
12φη)|1A (7)

where ṽa = −k∇φ, T = T (q) is a discrete approximation of the general Piola tensor (in physical space)
and define the coefficients of (φξ, φη)tr. Further details of the general tensor approximation are given in

V
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rock 1

rock 2

1

2

3

(a) Cluster of cells illustrating the rock-types of the
cells.

0.0 1.0

φt,2

φt,1

s∗

continuous φc

discontinuous φc

s

φc

(b) Capillary-saturation curves for two rocks with dif-
ferent threshold capillary pressures

(c) Cluster of cells with illustration of fluxes, contin-
uous phase-pressures with sub-cell triangular pressure
support

(d) Cluster of cells with illustration of fluxes, discontin-
uous capillary pressures with sub-cell triangular pres-
sure support

Fig. 2: Cluster and dual-cell of three 2D cells belonging to two rock-types.
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(Friis et al, 2008). Similarly, fluxes are determined on other sub-interfaces as well. The system of continuous
fluxes on the left and right hand sides of the sub-interfaces (half edges) are written as;140

F = ALΦ+ BLΦI = ARΦ+ BRΦI

where flux continuity is imposed, and F = (FA, FB , FC)tr, Φ = (φ1, φ2, φ3)tr and ΦI = (φA, φB , φC)tr.
Flux continuity is imposed on every sub-interface e.g, for IA flux continuity is written as,

F 1
IA = −F 2

IA

(8)

and expanded in tensor form

−(T 1
11φξ + T 1

12φη)|1A = (T 2
21φξ + T 2

22φη)|2A. (9)

The auxiliary interface pressures ΦI are eliminated via the above flux continuity conditions to obtain:
F = ĀΦ, where Ā denotes the resulting matrix after elimination of ΦI . The fluxes are then assembled in145

the discrete integrated divergence of Darcy velocity on the left hand side of Eq. (6).

4.1 Capillary flux

Now we describe the capillary pressure flux approximation. The right hand side of Eq. (6) involves the
discrete divergence of capillary flux. Approximation of capillary flux is illustrated in Fig. 2d, which shows a150

cluster of capillary pressure sub-cell triangle basis functions. Similar to phase pressure, a TPS approximation
of capillary pressure is employed, with a piecewise linear variation over each sub-cell triangle, e.g. over the
triangle sub-cell 1 capillary pressure is written in terms of barycentric coordinates (ξ, η) where:

φc = (1− ξ − η)φc,1 + ξφc,1A + ηφc,1C

and the normal flux at the left hand side of sub-interface IA is given by velocity resolution along the normal
vector dLh outward to cell 1:155

F 1
c,IA = ṽc · dLh = −(T 1

11φc,ξ + T 1
12φc,η)|1A (10)

where ṽc = −k∇φc. Similarly, fluxes are defined on the left and right hand sides of the sub-interfaces,
however account must now be taken of the conditions ((3), (4)).
We check the conditions ((3), (4)) across each of the interfaces by using the cell-centred values to decide
on continuity or discontinuity of capillary pressure across the interfaces. The rock types of the cells are
illustrated in Fig. 2a, which correspond to the saturation-capillary curves shown in Fig. 2b. Consider160

the situation for example, where φc,1 < φt,2. In this case, we cannot satisfy condition ((3)), as there is a
discontinuity in the capillary pressure on both interfaces A and C, which corresponds to the condition ((4)),
resulting in the imposition φc,2A = φt,2 and φc,3C = φt,2. As cells 2 and 3 belong to the same rock-types,
the capillary pressure will always be continuous on the interface between these i.e. φc,2B = φc,3B = φc,B .
In this case, the system of continuous capillary fluxes on the left and right hand sides of the sub-interfaces165

(half edges) are written as:

F c = AcLΦc + BcLΦc,I + CcLΦc,dis = AcRΦc + BcRΦc,I + CcRΦc,dis

where, F c = (Fc,A, Fc,B , Fc,C)tr, Φc = (φc,1, φc,2, φc,3)tr, Φc,I = (φc,1A, φc,B , φc,1C)tr and Φc,dis =
(φc,2A, φc,3C)tr. As Φc,dis (φc,2A = φc,3C = φt,2) and Φc has known numerical values, so these values
are used in the approximation of the fluxes. The above flux continuity conditions are used on the interfaces
to eliminate Φc,I . Thus, we can express capillary pressure fluxes as F c = ĀcΦc + C̄cΦc,dis which are then170

assembled to form the discrete divergence of capillary flux on the right hand side of Eq. (6).
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5 Convective Va flux approximation

The convective flux approximation involves approximations of mobility and fractional flow that appear in
the discrete pressure equation and saturation equation respectively. The discrete interface total mobility
Λi c.f. left hand side of the pressure equation (6), is defined by the average of cell neighbour values, e.g.175

referring to interface A of Fig. 2c then

ΛA =
1

2
(Λ(s1) + Λ(s2)).

As discussed above the interface oil-phase mobility c.f. right hand side of equation (6) is upwinded, here
according to the sign of the local capillary phase flux resolved on each control-volume face, where e.g.
referring to interface A of Fig. 2d

λoA =

{
λo(s1) if (Fc,A) ≥ 0,

λo(s2) if (Fc,A) < 0.

where Fc,A is defined above in section 4.1, which leads to a stable approximation. We note that the centred180

approximation of λo with λoA = 1
2 (λo(s1) + λo(s2)) leads to the unstable approximation discussed above,

and a test case demonstrating the resulting instability is presented in the results section 6.5.
The discrete saturation equation is written as

(sn+1
i − sni )

∆t
Ai = −

2Ne∑
i

fw
n
i Λ

n
i Fi + qwAi (11)

which employs explicit forward (Euler) time stepping, where sni is saturation at cell i and time level n, Ai is
the cell area, ∆t is the time step and the total mobility flux ΛiFi is defined above. Also as discussed above,185

the CFL is based on the Va wave speed, and in the Va formulation fractional flow fw is upwinded, here
according to the sign of the local Va flux resolved on each control-volume face, where e.g. again referring
to interface A of Fig. 2c

fwA =

{
fw(s1) if (FA) ≥ 0,

fw(s2) if (FA) < 0.

where FA is defined above in section 4.

6 Numerical simulations190

In this section, we present numerical simulations that demonstrate the above method applied to problems
with capillary heterogeneity and discontinuity. The boundary conditions for all cases involve specification
of in-flow flux and constant saturation on the left hand boundary, pressure on the right hand out-flow
boundary and solid wall zero normal flux on the top and bottom walls of the domains. First, we present a
test case where the capillary pressure is always continuous, and then a second case that deals with capillary195

discontinuity. We also present test cases with discontinuous capillarity and full-tensor permeability fields
and different residual oil saturations in two different rocks. We include a case using a centred approximation
for capillary flux oil-phase mobility which leads to numerical instability and contrast to the stable results
obtained using an upwind oil-phase mobility approximation based on capillary flux. The CFL number used
is 0.01, and while very low stable results are obtained in all cases.200

6.1 Continuous capillarity

We present a simulation of the displacement of oil by water from left to right in a layered channel. The
domain of size [2m × 0.9m], consists of two alternating rock-types with different permeability values. The
permeability of the domain is isotropic everywhere with k = kImD. The middle rock is of low permeability
(k = 0.01) compared to rest of the domain (k = 1.0), as shown in Fig. 3a. Quadratic relative permeabilities205

are chosen for the whole domain in this test case. A triangular grid is used for this test case and subsequent
cases. The capillary-saturation relationship is defined by

φc = − ϕ√
k

ln s

which varies for a heterogeneous permeable domain. The capillary pressure is continuous with constant
threshold pressure thoughout the whole domain. The saturation fields at PVI= 0.125 and PVI= 0.25
are shown in Fig. 3b and Fig. 3c respectively, which show effects of heterogeneity of the domain on oil210

displacement, consistent with the literature (Friis and Evje, 2012).
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k = 0.01

k = 1.0

k = 1.0

(a) Rocks with heterogeneity

(b) Saturation plot at PVI= 0.125. (c) Saturation plot at PVI= 0.25.

Fig. 3: Channel flow in a domain consisting of two rock-types with equal threshold capillary pressure values.

Fig. 4: Capillary pressure functions with different threshold pressures.

6.2 Discontinuous capillarity

Now, we present simulations where the capillary pressure can be discontinuous across the interface between
two different rock-types. Consider the capillary-saturation curves, as shown in Fig. 4, which are defined by:

rock-type 1 : φc = 5(1− ŝ)2 (12)

rock-type 2 : φc = 4(1− ŝ)2 + 1 (13)

where, ŝ is the normalised variable defined by

ŝ =
s− swc

1− sor − swc
(14)

where sor = swc = 0.0 so that s = ŝ inside the whole domain for this section. It is evident that there
is a difference in the threshold pressures of the two rock-types and the capillary pressure is discontinuous215

whenever capillary pressure in the rock-type 1 is less than the threshold pressure of rock-type 2. Two cases
are considered: Case (A) where the rock in the inner rectangle of the domain has rock-type 2 (Eq. (13))
and the rest of the domain has rock-type 1 (Eq. (12)), as shown in Fig. 5a. Case (B) is the opposite of case
(A), where now the rock in the inner rectangle of domain has rock-type 1 (Eq. (12)) and the rest of the
domain has rock-type 2 (Eq. (13)), as shown in Fig. 5b. The relative permeability functions for the whole220

domain are given by

krw = ŝ
2+3θ
θ , kro = (1− ŝ)2(1− ŝ

2+θ
θ ) (15)
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(a) Case A: Rocks with capillary heterogeneity (Con-
stant permeability)

(b) Case B: Rocks with capillary heterogeneity (Con-
stant permeability)

(c) Case A: Saturation plot at PVI= 0.5 (d) Case B: Saturation plot at PVI= 0.5

(e) Case A: Saturation plot at PVI= 0.75 (f) Case B: Saturation plot at PVI= 0.75

Fig. 5: Simulation results for the cases of capillary discontinuity corresponding to capillary pressure curves
shown in Fig. 4

where θ is the characteristic of the inhomogeneity of the medium and θ = 2 is used here. The domain size
and grid used in this section are the same as in the previous section 6.1. Permeability values of both rock-
types are equal (k = ImD). Figures 5c and 5d show the saturation plots for cases (A) and (B) respectively
at PVI= 0.5. Saturation fields for both cases at PVI= 0.75 are shown in Figs. 5e, 5f. As a consequence, in225

case (A) the non-wetting phase flows out of the rectangle while being replaced by the wetting phase, as the
outer domain has lower entry pressure. Conversely in case (B) the non-wetting phase is trapped due to the
higher entry pressure of the outer domain, a phenomenon known as oil trapping in the literature (e.g., van
Duijn et al, 1995; Brenner et al, 2013).

(a) Quadrilateral mesh, 1200 cells (b) Triangular mesh, 1440 cells

Fig. 6: Meshes used for discontinuous capillarity case with full-tensor anisotropic permeability field

6.3 Discontinuous capillarity with a full-tensor permeability field230

We now present simulation results for a test case with a full-tensor permeability field i.e. k = ( 7.750 3.897
3.897 3.250 )mD

(anisotropy ratio of 10 : 1 at 30o to the horizontal reference axis). The domain, capillary heterogeneity and
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(a) Quadrilateral mesh, TPFA (b) Triangular mesh, TPFA

(c) Quadrilateral mesh, CVD-MPFA (d) Triangular mesh, CVD-MPFA

Fig. 7: Saturation results at PVI= 0.5 for the case of capillary discontinuity with full-tensor permeability
field

(a) Fine triangular mesh, 3600 cells
(b) Saturation plot using fine triangular mesh

Fig. 8: Fine scale saturation result at PVI= 0.5 via CVD-MPFA for the case of capillary discontinuity with
full-tensor permeability field

boundary conditions are the same as Case (B) of the previous section 6.2. Results are computed on two mesh
types; the first is a quadrilateral mesh and the second is a triangular mesh, as shown in Fig. 6. Solutions
are computed using both the new CVD-MPFA method and the conventional two-point flux approximation235

(TPFA) method on both mesh types. The simulation results at PVI= 0.5 and PVI= 0.75 are presented
in Figs. 7 and 9. The saturation fields computed by the CVD-MPFA method clearly show that the new
method captures the influence of full-tensor anisotropy effects on the flow field while resolving oil trapping.
In contrast the results obtained via TPFA do not account for a full-tensor permeability field and clearly
illustrate the O(1) error in the solution, where only diagonal tensor effects can be seen. The saturation240

fields computed on both mesh types by the CVD-MPFA method are in good agreement with no indication
of grid orientation effects. For reference the results computed by the new CVD-MPFA method on a fine
triangular mesh are presented in Figs. 8b and 9e, which verifies the consistent trends in anisotropic flow
field behaviour predicted by the CVD-MPFA method on coarser grids for both grid types.

6.4 Different residual oil saturations245

In this section, we consider different residual saturations in the two rock-types. The domain, capillary
heterogeneity and boundary conditions are the same as Case (B) of the section 6.2 where, capillary functions
are defined by Eqs. (12) and (13) and relative permeability functions are defined by Eq. (15). Here sor = 0.1,
swc = 0.0 inside the inner rock-type 1, and sor = swc = 0.0 elsewhere. The capillary-saturation curves are
shown in Fig. 10. Results are computed for domains with isotropic as well as full-tensor permeability fields250

as defined above, on both coarse and fine triangular meshes as shown in Fig. 11. The solutions computed
using CVD-MPFA for the domain with isotropic permeability field are shown in Fig. 12 while solutions
computed using CVD-MPFA for the domain with a full-tensor permeability field are shown in Fig. 13.
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(a) Quadrilateral mesh, TPFA (b) Triangular mesh, TPFA

(c) Quadrilateral mesh, CVD-MPFA (d) Triangular mesh, CVD-MPFA

(e) Fine triangular mesh, CVD-MPFA

Fig. 9: Saturation results at PVI= 0.75 for the case of capillary discontinuity with full-tensor permeability
field

Fig. 10: Capillary pressure functions with different threshold pressures and sor = 0.1 inside the inner
rock-type 1.

Results computed using TPFA for the domain with a full-tensor permeability field are shown in Fig. 14
which again fail to capture full-tensor permeability effects due to the O(1) error in the TPFA flux. The255

TPFA results are in sharp contrast to those of the consistent CVD-MPFA scheme c.f. Fig. 13 which capture
the flow effects induced by the full-tensor permeability field.

6.5 Centred capillary flux phase mobility gives instability

The results presented in Fig. 15 are for a diagonal tensor with sor = 0 and computed on the triangular mesh
Fig. 6b with the Va scheme using a centred approximation for capillary flux oil-phase mobility λo. Local260
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(a) Mesh 1, 1440 cells (b) Mesh 2, 2880 cells

Fig. 11: Meshes used for discontinuous capillarity case and non-zero residual oil saturation (sor = 0.1) in
inner rock

(a) Mesh 1, PVI= 0.5 (b) Mesh 2, PVI= 0.5

(c) Mesh 1, PVI= 0.75 (d) Mesh 2, PVI= 0.75

Fig. 12: Saturation results at PVI= 0.5 and PVI= 0.75 via CVD-MPFA for the case of capillary discontinuity
with isotropic permeability field and sor = 0.1 in inner rock

(a) Mesh 1, PVI= 0.5 (b) Mesh 2, PVI= 0.5

(c) Mesh 1, PVI= 0.75 (d) Mesh 2, PVI= 0.75

Fig. 13: Saturation results at PVI= 0.5 and PVI= 0.75 via CVD-MPFA for the case of capillary discontinuity
with full-tensor permeability field and sor = 0.1 in inner rock

instability can be seen adjacent to the left hand side of the inner rectangular boundary in Fig. 15(a) which
then spreads around the upper and lower perimeter in Fig. 15(b). However in the work presented in this
paper we employ an upwind approximation for capillary flux oil-phase mobility λo according to the sign of
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(a) PVI= 0.5 (b) PVI= 0.75

Fig. 14: Saturation results at PVI= 0.5 and PVI= 0.75 via TPFA using Mesh 1 (Fig. 11a) for the case of
capillary discontinuity with full-tensor permeability field and sor = 0.1 in inner rock

(a) PVI= 0.5 (b) PVI= 0.75

Fig. 15: Simulation results for the case of capillary discontinuity corresponding to capillary pressure curves
shown in Fig. 4 and case B described in section 6.2 with isotropic permeability field and computed on mesh
Fig. 6b using a centred approximation for phase mobility

the capillary pressure flux, which aids stability, together with the upwind Va flux and CFL condition based
on the Va flux. The specific example results of Fig. 15(a,b) should be contrasted with the corresponding265

stable results shown above in Figs. 5d and 5f respectively, for the same case, computed on the same mesh
but instead using the upwind oil-phase mobility approximation.

7 Conclusions

We have presented a new cell-centred finite-volume formulation for two-phase flow where capillary pres-
sure can be discontinuous across the interfaces of heterogeneous regions in the domain. The CVD-MPFA270

scheme (Friis et al, 2008), designed for the solution of the pressure equation with discontinuous full-tensor
permeability coefficients, is further developed here and leads to a new CVD-MPFA capillary pressure op-
erator. The new method is specifically formulated to handle discontinuous capillary pressure. Simulations
are presented which include cases of oil trapping and demonstrate the ability of the method to resolve dis-
continuous capillary pressure fields in the presence of both diagonal and full-tensor permeability fields. In275

contrast to the standard TPFA method which is unable to resolve full-tensor flow fields, consistent results
are computed by the CVD-MPFA method on both structured and unstructured grids that are free of grid
orientation, and demonstrate the ability of the method to resolve anisotropy induced flow fields. In addi-
tion to an upwind approximation for the saturation equation Va flux and the associated stability limit, the
importance of upwinding oil-phase mobility according to capillary flux is demonstrated for discontinuous280

capillary pressure, and leads to a hybrid upwind Va formulation constructed within a novel CVD-MPFA
framework.
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Nomenclature

φ pressure
Φ vector of pressures
ϕ porosity
λw water mobility
λo oil mobility
Λ total mobility λw + λo
µ viscosity

CVD-MPFA control-volume distributed multi-point flux approximation
F flux
k permeability tensor

K k
µ

q quadrature of CVD-MPFA schemes
qw known water phase source term
qo known oil phase source term
s saturation
v velocity

Subscripts285

c capillary
o oil
w water

Superscript

tr transpose
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