104 research outputs found

    Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP

    Get PDF
    Acidocalcisomes are acidic calcium-storage compartments described from bacteria to humans and characterized by their high content in poly P (polyphosphate), a linear polymer of many tens to hundreds of Pi residues linked by high-energy phosphoanhydride bonds. In the present paper we report that millimolar levels of short-chain poly P (in terms of Pi residues) and inorganic PPi are present in sea urchin extracts as detected using 31P-NMR, enzymatic determinations and agarose gel electrophoresis. Poly P was localized to granules randomly distributed in the sea urchin eggs, as shown by labelling with the poly-P-binding domain of Escherichia coli exopolyphosphatase. These granules were enriched using iodixanol centrifugation and shown to be acidic and to contain poly P, as determined by Acridine Orange and DAPI (4′,6′-diamidino-2-phenylindole) staining respectively. These granules also contained large amounts of calcium, sodium, magnesium, potassium and zinc, as detected by X-ray microanalysis, and bafilomycin A1-sensitive ATPase, pyrophosphatase and exopolyphosphatase activities, as well as Ca2+/H+ and Na+/H+ exchange activities, being therefore similar to acidocalcisomes described in other organisms. Calcium release from these granules induced by nigericin was associated with poly P hydrolysis. Although NAADP (nicotinic acid–adenine dinucleotide phosphate) released calcium from the granule fraction, this activity was not significantly enriched as compared with the NAADP-stimulated calcium release from homogenates and was not accompanied by poly P hydrolysis. GPN (glycyl-L-phenylalanine-naphthylamide) released calcium when added to sea urchin homogenates, but was unable to release calcium from acidocalcisome-enriched fractions, suggesting that these acidic stores are not the targets for NAADP

    The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores

    Get PDF
    Second messenger-induced Ca2+-release from intracellular stores plays a key role in a multitude of physiological processes. In addition to 1,4,5-inositol trisphosphate (IP3), Ca2+, and cyclic ADP ribose (cADPR) that trigger Ca2+-release from the endoplasmatic reticulum (ER), nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified as a cellular metabolite that mediates Ca2+-release from lysosomal stores. While NAADP-induced Ca2+-release has been found in many tissues and cell types, the molecular identity of the channel(s) conferring this release remained elusive so far. Here, we show that TPCN2, a novel member of the two-pore cation channel family, displays the basic properties of native NAADP-dependent Ca2+-release channels. TPCN2 transcripts are widely expressed in the body and encode a lysosomal protein forming homomers. TPCN2 mediates intracellular Ca2+-release after activation with low-nanomolar concentrations of NAADP while it is desensitized by micromolar concentrations of this second messenger and is insensitive to the NAADP analog nicotinamide adenine dinucleotide phosphate (NADP). Furthermore, TPCN2-mediated Ca2+-release is almost completely abolished when the capacity of lysosomes for storing Ca2+ is pharmacologically blocked. By contrast, TPCN2-specific Ca2+-release is unaffected by emptying ER-based Ca2+ stores. In conclusion, these findings indicate that TPCN2 is a major component of the long-sought lysosomal NAADP-dependent Ca2+-release channel

    Effects of Ionomycin on Egg Activation and Early Development in Starfish

    Get PDF
    Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation

    Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart

    Get PDF
    Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca(2+))-handling in the human heart.RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6).Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+)-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+)-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM.DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+)-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2+)-handling genes

    Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites

    Get PDF
    Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+ influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect

    Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling

    Full text link

    High Capacity, Small World Associative Memory Models

    Get PDF
    Original article can be found at: http://www.informaworld.com/smpp/title~content=t713411269--Copyright Informa / Taylor and Francis Group DOI : 10.1080/09540090600639339Peer reviewe

    Cryogenic electron microscopy approaches that combine images and tilt series

    Full text link
    Abstract Cryogenic electron microscopy can be widely applied to biological specimens from the molecular to the cellular scale. In single-particle analysis, 3D structures may be obtained in high resolution by averaging 2D images of single particles in random orientations. For pleomorphic specimens, structures may be obtained by recording the tilt series of a single example of the specimen and calculating tomograms. Where many copies of a single structure such as a protein or nucleic acid assembly are present within the tomogram, averaging of the sub-volumes (subtomogram averaging) has been successfully applied. The choice of data collection method for any given specimen may depend on the structural question of interest and is determined by the radiation sensitivity of the specimen. Here, we survey some recent developments on the use of hybrid methods for recording and analysing data from radiation-sensitive biological specimens. These include single-particle reconstruction from 2D images where additional views are recorded at a single tilt angle of the specimen and methods where image tilt series, initially used for tomogram reconstruction, are processed as individual single-particle images. There is a continuum of approaches now available to maximize structural information obtained from the specimen.</jats:p
    corecore