8,079 research outputs found

    Heat kernel asymptotics with mixed boundary conditions

    Get PDF
    We calculate the coefficient a5a_5 of the heat kernel asymptotics for an operator of Laplace type with mixed boundary conditions on a general compact manifold.Comment: 26 pages, LaTe

    Trends in U.S. Trade and Comparative Advantage

    Get PDF
    macroeconomics, U.S. trade, comparative advantage

    Quantum Effective Action in Spacetimes with Branes and Boundaries

    Full text link
    We construct quantum effective action in spacetime with branes/boundaries. This construction is based on the reduction of the underlying Neumann type boundary value problem for the propagator of the theory to that of the much more manageable Dirichlet problem. In its turn, this reduction follows from the recently suggested Neumann-Dirichlet duality which we extend beyond the tree level approximation. In the one-loop approximation this duality suggests that the functional determinant of the differential operator subject to Neumann boundary conditions in the bulk factorizes into the product of its Dirichlet counterpart and the functional determinant of a special operator on the brane -- the inverse of the brane-to-brane propagator. As a byproduct of this relation we suggest a new method for surface terms of the heat kernel expansion. This method allows one to circumvent well-known difficulties in heat kernel theory on manifolds with boundaries for a wide class of generalized Neumann boundary conditions. In particular, we easily recover several lowest order surface terms in the case of Robin and oblique boundary conditions. We briefly discuss multi-loop applications of the suggested Dirichlet reduction and the prospects of constructing the universal background field method for systems with branes/boundaries, analogous to the Schwinger-DeWitt technique.Comment: LaTeX, 25 pages, final version, to appear in Phys. Rev.

    Effective action and heat kernel in a toy model of brane-induced gravity

    Full text link
    We apply a recently suggested technique of the Neumann-Dirichlet reduction to a toy model of brane-induced gravity for the calculation of its quantum one-loop effective action. This model is represented by a massive scalar field in the (d+1)(d+1)-dimensional flat bulk supplied with the dd-dimensional kinetic term localized on a flat brane and mimicking the brane Einstein term of the Dvali-Gabadadze-Porrati (DGP) model. We obtain the inverse mass expansion of the effective action and its ultraviolet divergences which turn out to be non-vanishing for both even and odd spacetime dimensionality dd. For the massless case, which corresponds to a limit of the toy DGP model, we obtain the Coleman-Weinberg type effective potential of the system. We also obtain the proper time expansion of the heat kernel in this model associated with the generalized Neumann boundary conditions containing second order tangential derivatives. We show that in addition to the usual integer and half-integer powers of the proper time this expansion exhibits, depending on the dimension dd, either logarithmic terms or powers multiple of one quarter. This property is considered in the context of strong ellipticity of the boundary value problem, which can be violated when the Euclidean action of the theory is not positive definite.Comment: LaTeX, 20 pages, new references added, typos correcte

    Asymptotics of the heat equation with `exotic' boundary conditions or with time dependent coefficients

    Full text link
    The heat trace asymptotics are discussed for operators of Laplace type with Dirichlet, Robin, spectral, D/N, and transmittal boundary conditions. The heat content asymptotics are discussed for operators with time dependent coefficients and Dirichlet or Robin boundary conditions.Comment: A talk of P.B. Gilkey at "Quantum Gravity and Spectral Geometry", Naples, July 2001, to appear in the proceedings v2: a misprint in eq. (3) correcte

    Spectral action for torsion with and without boundaries

    Full text link
    We derive a commutative spectral triple and study the spectral action for a rather general geometric setting which includes the (skew-symmetric) torsion and the chiral bag conditions on the boundary. The spectral action splits into bulk and boundary parts. In the bulk, we clarify certain issues of the previous calculations, show that many terms in fact cancel out, and demonstrate that this cancellation is a result of the chiral symmetry of spectral action. On the boundary, we calculate several leading terms in the expansion of spectral action in four dimensions for vanishing chiral parameter θ\theta of the boundary conditions, and show that θ=0\theta=0 is a critical point of the action in any dimension and at all orders of the expansion.Comment: 16 pages, references adde

    Positive mass theorem for the Paneitz-Branson operator

    Get PDF
    We prove that under suitable assumptions, the constant term in the Green function of the Paneitz-Branson operator on a compact Riemannian manifold (M,g)(M,g) is positive unless (M,g)(M,g) is conformally diffeomophic to the standard sphere. The proof is inspired by the positive mass theorem on spin manifolds by Ammann-Humbert.Comment: 7 page
    • …
    corecore