We construct quantum effective action in spacetime with branes/boundaries.
This construction is based on the reduction of the underlying Neumann type
boundary value problem for the propagator of the theory to that of the much
more manageable Dirichlet problem. In its turn, this reduction follows from the
recently suggested Neumann-Dirichlet duality which we extend beyond the tree
level approximation. In the one-loop approximation this duality suggests that
the functional determinant of the differential operator subject to Neumann
boundary conditions in the bulk factorizes into the product of its Dirichlet
counterpart and the functional determinant of a special operator on the brane
-- the inverse of the brane-to-brane propagator. As a byproduct of this
relation we suggest a new method for surface terms of the heat kernel
expansion. This method allows one to circumvent well-known difficulties in heat
kernel theory on manifolds with boundaries for a wide class of generalized
Neumann boundary conditions. In particular, we easily recover several lowest
order surface terms in the case of Robin and oblique boundary conditions. We
briefly discuss multi-loop applications of the suggested Dirichlet reduction
and the prospects of constructing the universal background field method for
systems with branes/boundaries, analogous to the Schwinger-DeWitt technique.Comment: LaTeX, 25 pages, final version, to appear in Phys. Rev.