1,018 research outputs found

    Air-sea interaction in tropical atmosphere: influence of ocean mixing on atmospheric processes

    Full text link
    One the major factors determining the development and evolution of atmospheric convection is the sea surface temperature and its variability. Results of this thesis show that state of atmospheric convection impacts the diurnal distribution of thermal energy in the upper ocean. Under calm and clear sky conditions a shallow warm layer of several meters depth develops on the surface of the ocean. This warm layer drives an anomalous flux from the ocean to the atmosphere. A novel Kelvin wave trajectory database based on satellite data is introduced in this study. The investigation of its data shows that substantial fraction of Kelvin waves is initiated as a result of interaction with another Kelvin wave. Two distinct categories are defined and analyzed: the two- and multiple Kelvin wave initiations, and a spin off initiation. Results show that primary forcing of such waves are high diurnal cycle and/or increased wind speed and latent heat flux at the ocean surface. Variability of the ocean surface and subsurface along Kelvin wave trajectories over Indian Ocean is investigated: wind speed and latent heat flux increase and a sea surface temperature anomaly decreases during a wave passage. It is also shown that Kelvin waves are longitude-diurnal cycle phase locked over the Maritime Continent. This cycle phase locking is such that it agrees with mean, local diurnal cycle of convection in the atmosphere. The strength of the longitude-diurnal cycle phase locking differs between non-blocked Kelvin waves, which make successful transition over the Maritime Continent, and blocked waves that terminate within it. The distance between the islands of Sumatra and Borneo agrees with the distance travelled by an average Kelvin wave in one day. This suggests that the Maritime Continent may act as a filter, favoring successful propagation waves, which are in phase with the local diurnal cycle of convection.Comment: PhD thesis, University of Warsa

    Achieving fruit, juice, and vegetable recipe preparation goals influences consumption by 4th grade students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Including children in food preparation activities has long been recommended as a method to encourage children's consumption, but has not been evaluated. Goal setting is also a common component of behavior change programs. This study assessed the impact of attaining goals to prepare fruit-juice or vegetable recipes on student fruit and vegetable consumption as part of a 10-week fruit and vegetable intervention for fourth grade students.</p> <p>Methods</p> <p>At six of the 10 sessions, students (n = 671) selected a fruit-juice or vegetable recipe to prepare at home before the next session. Students returned parent-signed notes reporting their child's goal attainment. Baseline and post consumption were assessed with up to four days of dietary recalls. Analyses included regression models predicting post consumption from the number of fruit-juice or vegetable recipe preparation goals attained, controlling for baseline consumption.</p> <p>Results</p> <p>In general, girls and Hispanic students achieved the most recipe preparation goals. For students with highest baseline fruit-juice consumption, post fruit-juice consumption was higher by about 1.0 serving for those achieving 2 or 3 fruit-juice recipe preparation goals. Post vegetable consumption was highest for students reporting the highest baseline vegetable consumption and who achieved two or three vegetable recipe preparation goals. In general, recipe goal setting was a useful procedure primarily for those with high baseline consumption.</p> <p>Conclusion</p> <p>This is one of the first reports demonstrating that home recipe preparation was correlated with dietary change among children.</p

    Chemical screening to uncover small molecules that modulate neural stem cell self-renewal and differentiation

    Get PDF
    In vitro expanded neural stem cells provide an important cellular model to explore mechanisms of neural development, for modelling of disease, and in the longer term may have applications in new types of stem cell-based therapies. However, our ability to steer neural stem (NS) cell lines into specific desired lineages in vitro remains limited. PDGFRα is one of the earliest markers of the transition of neural stem cells to oligodendrocyte progenitors. I established and characterised a novel set of mouse NS cell lines that report the activation of PDGFRα via expression of an H2B:GFP ‘knock-in’. Three clonal ‘PG1’ cell lines were fully characterised. Under self-renewing conditions I found <1% of NS cell express the H2B:GFP reporter but this increases to ~15-20% following induction of differentiation. Using this cellular model system I carried out a high-content chemical screen of a diverse collection of 463 pharmacologically active small molecule modulators of ‘stem cell pathways’ and kinase inhibitors, to identify those capable of modulating NS cell self-renewal and differentiation. I did not uncover any small molecules capable of promoting OPC lineage specification. However, I found multiple HDAC inhibitors that were highly effective in blocking the activation of PDGFRα, a finding that mirrors published studies implicating HDAC inhibition in the later differentiation of OPCs to oligodendrocytes. Three further compounds, Nigericin (an ionophore), Withaferin (a steroidal lactone) and NFkB inhibitor also completely blocked OPC commitment. I focused on the specific cellular responses and downstream molecular events triggered by these molecules and tested their differentiation potential on human NS cells and malignant glioblastoma-derived NS cells

    Quasi-classical cyclotron resonance of Dirac fermions in highly doped graphene

    Full text link
    Cyclotron resonance in highly doped graphene has been explored using infrared magnetotransmission. Contrary to previous work, which only focused on the magneto-optical properties of graphene in the quantum regime, here we study the quasi-classical response of this system. We show that it has a character of classical cyclotron resonance, with an energy which is linear in the applied magnetic field and with an effective cyclotron mass defined by the position of the Fermi level m = E_F/v_F^2.Comment: 6 pages, 4 figure

    Subsurface oceanic structure associated with atmospheric convectively coupled equatorial Kelvin waves in the eastern Indian Ocean

    Get PDF
    Atmospheric convectively coupled equatorial Kelvin waves (CCKWs) are a major tropical weather feature strongly influenced by ocean–atmosphere interactions. However, prediction of the development and propagation of CCKWs remains a challenge for models. The physical processes involved in these interactions are assessed by investigating the oceanic response to the passage of CCKWs across the eastern Indian Ocean and Maritime Continent using the NEMO ocean model analysis with data assimilation. Three-dimensional life cycles are constructed for “solitary” CCKW events. As a CCKW propagates over the eastern Indian Ocean, the immediate thermodynamic ocean response includes cooling of the ocean surface and subsurface, deepening of the mixed layer depth, and an increase in the mixed layer heat content. Additionally, a dynamical downwelling signal is observed two days after the peak in the CCKW westerly wind burst, which propagates eastward along the Equator and then follows the Sumatra and Java coasts, consistent with a downwelling oceanic Kelvin wave with an average phase speed of 2.3 m s −1. Meridional and vertical structures of zonal velocity anomalies are consistent with this framework. This dynamical feature is consistent across distinct CCKW populations, indicating the importance of CCKWs as a source of oceanic Kelvin waves in the eastern Indian Ocean. The subsurface dynamical response to the CCKWs is identifiable up to 11 days after the forcing. These ocean feedbacks on time scales longer than the CCKW life cycle help elucidate how locally driven processes can rectify onto longer time-scale processes in the coupled ocean–atmosphere system

    Self efficacy for fruit, vegetable and water intakes: Expanded and abbreviated scales from item response modeling analyses

    Get PDF
    Objective To improve an existing measure of fruit and vegetable intake self efficacy by including items that varied on levels of difficulty, and testing a corresponding measure of water intake self efficacy. Design Cross sectional assessment. Items were modified to have easy, moderate and difficult levels of self efficacy. Classical test theory and item response modeling were applied. Setting One middle school at each of seven participating sites (Houston TX, Irvine CA, Philadelphia PA, Pittsburg PA, Portland OR, rural NC, and San Antonio TX). Subjects 714 6th grade students. Results Adding items to reflect level (low, medium, high) of self efficacy for fruit and vegetable intake achieved scale reliability and validity comparable to existing scales, but the distribution of items across the latent variable did not improve. Selecting items from among clusters of items at similar levels of difficulty along the latent variable resulted in an abbreviated scale with psychometric characteristics comparable to the full scale, except for reliability. Conclusions The abbreviated scale can reduce participant burden. Additional research is necessary to generate items that better distribute across the latent variable. Additional items may need to tap confidence in overcoming more diverse barriers to dietary intake

    The spin-1/2 XXZ Heisenberg chain, the quantum algebra U_q[sl(2)], and duality transformations for minimal models

    Get PDF
    The finite-size scaling spectra of the spin-1/2 XXZ Heisenberg chain with toroidal boundary conditions and an even number of sites provide a projection mechanism yielding the spectra of models with a central charge c<1 including the unitary and non-unitary minimal series. Taking into account the half-integer angular momentum sectors - which correspond to chains with an odd number of sites - in many cases leads to new spinor operators appearing in the projected systems. These new sectors in the XXZ chain correspond to a new type of frustration lines in the projected minimal models. The corresponding new boundary conditions in the Hamiltonian limit are investigated for the Ising model and the 3-state Potts model and are shown to be related to duality transformations which are an additional symmetry at their self-dual critical point. By different ways of projecting systems we find models with the same central charge sharing the same operator content and modular invariant partition function which however differ in the distribution of operators into sectors and hence in the physical meaning of the operators involved. Related to the projection mechanism in the continuum there are remarkable symmetry properties of the finite XXZ chain. The observed degeneracies in the energy and momentum spectra are shown to be the consequence of intertwining relations involving U_q[sl(2)] quantum algebra transformations.Comment: This is a preprint version (37 pages, LaTeX) of an article published back in 1993. It has been made available here because there has been recent interest in conformal twisted boundary conditions. The "duality-twisted" boundary conditions discussed in this paper are particular examples of such boundary conditions for quantum spin chains, so there might be some renewed interest in these result

    Measuring diet in primary school children aged 8-11 years: validation of the Child and Diet Evaluation Tool (CADET) with an emphasis on fruit and vegetable intake.

    Get PDF
    Background/Objectives:The Child And Diet Evaluation Tool (CADET) is a 24-h food diary that measures the nutrition intake of children aged 3-7 years, with a focus on fruit and vegetable consumption. Until now CADET has not been used to measure nutrient intake of children aged 8-11 years. To ensure that newly assigned portion sizes for this older age group were valid, participants were asked to complete the CADET diary (the school and home food diary) concurrently with a 1-day weighed record. Subjects/Methods:A total of 67 children with a mean age of 9.3 years (s.d.: ± 1.4, 51% girls) participated in the study. Total fruit and vegetable intake in grams and other nutrients were extracted to compare the mean intakes from the CADET diary and Weighed record using t-tests and Pearson's r correlations. Bland-Altman analysis was also conducted to assess the agreement between the two methods. Results: Correlations comparing the CADET diary to the weighed record were high for fruit, vegetables and combined fruit and vegetables (r=0.7). The results from the Bland-Altman plots revealed a mean difference of 54 g (95% confidence interval: -88, 152) for combined fruit and vegetables intake. CADET is the only tool recommended by the National Obesity Observatory that has been validated in a UK population and provides nutrient level data on children's diets. Conclusions:The results from this study conclude that CADET can provide high-quality nutrient data suitable for evaluating intervention studies now for children aged 3-11 years with a focus on fruit and vegetable intake
    • 

    corecore