Abstract

The finite-size scaling spectra of the spin-1/2 XXZ Heisenberg chain with toroidal boundary conditions and an even number of sites provide a projection mechanism yielding the spectra of models with a central charge c<1 including the unitary and non-unitary minimal series. Taking into account the half-integer angular momentum sectors - which correspond to chains with an odd number of sites - in many cases leads to new spinor operators appearing in the projected systems. These new sectors in the XXZ chain correspond to a new type of frustration lines in the projected minimal models. The corresponding new boundary conditions in the Hamiltonian limit are investigated for the Ising model and the 3-state Potts model and are shown to be related to duality transformations which are an additional symmetry at their self-dual critical point. By different ways of projecting systems we find models with the same central charge sharing the same operator content and modular invariant partition function which however differ in the distribution of operators into sectors and hence in the physical meaning of the operators involved. Related to the projection mechanism in the continuum there are remarkable symmetry properties of the finite XXZ chain. The observed degeneracies in the energy and momentum spectra are shown to be the consequence of intertwining relations involving U_q[sl(2)] quantum algebra transformations.Comment: This is a preprint version (37 pages, LaTeX) of an article published back in 1993. It has been made available here because there has been recent interest in conformal twisted boundary conditions. The "duality-twisted" boundary conditions discussed in this paper are particular examples of such boundary conditions for quantum spin chains, so there might be some renewed interest in these result

    Similar works

    Available Versions

    Last time updated on 01/04/2019