361 research outputs found

    Variation in syn-subduction sedimentation patterns from inner to outer portions of deep-water fold and thrust belts: examples from the Hikurangi subduction margin of New Zealand

    Get PDF
    The structure and distribution of accommodation in fold and thrust belts vary both laterally and longitudinally. Here we integrate gravity, bathymetry and 2D seismic datasets to investigate the structural and stratigraphic variation in the southern part of the Hikurangi subduction wedge, onshore and offshore North Island, New Zealand. Three morphostructural portions are recognized: The inner portion demonstrates reactivation of inherited structures, producing thick-skinned deformation. Pre-subduction rocks are represented by kilometres of acoustically chaotic seismofacies. Thick-skinned deformation and readily deformable substrate lead to the development of wide trench-slope sub-basins, infilled with >5 km of syn-subduction sediments. The mid portion typically demonstrates thrust faults with connections to deeper structures, leading to the development of an imbricate system with asymmetrical sub-basins typically <5 km thick developed on the back-limb of thrust related folds. An antiformal stack marks the transition from the thick-skinned interior of the basin to the thin-skinned accretionary prism. Beyond this, the relatively non-deformed outer portion demonstrates frontal folds, propagating thrusts and up to 3 km thickness of syn-subduction strata. Structural variation across the subduction wedge controls the generation of accommodation with implications for sediment distribution within fold and thrust belts and for petroleum system development

    Distinct magnetic regimes through site-selective atom substitution in the frustrated quantum antiferromagnet Cs2_2CuCl4x_{4-x}Brx_x

    Full text link
    We report on a systematic study of the magnetic properties on single crystals of the solid solution Cs2_2CuCl4x_{4-x}Brx_x (0 \leq x \leq 4), which include the two known end-member compounds Cs2_2CuCl4_4 and Cs2_2CuBr4_4, classified as quasi-two-dimensional quantum antiferromagnets with different degrees of magnetic frustration. By comparative measurements of the magnetic susceptibility χ\chi(TT) on as many as eighteen different Br concentrations, we found that the inplane and out-of-plane magnetic correlations, probed by the position and height of a maximum in the magnetic susceptibility, respectively, do not show a smooth variation with x. Instead three distinct concentration regimes can be identified, which are separated by critical concentrations xc1_{c1} = 1 and xc2_{c2} = 2. This unusual magnetic behavior can be explained by considering the structural peculiarities of the materials, especially the distorted Cu-halide tetrahedra, which support a site-selective replacement of Cl- by Br- ions. Consequently, the critical concentrations xc1_{c1} (xc2_{c2}) mark particularly interesting systems, where one (two) halidesublattice positions are fully occupied.Comment: 15 pages, 4 figure

    Deformation–sedimentation feedback and the development of anomalously thick aggradational turbidite lobes: Outcrop and subsurface examples from the Hikurangi Margin, New Zealand

    Get PDF
    Concepts of the interaction between autogenic (e.g., flow process) and allogenic (e.g., tectonics) controls on sedimentation have advanced to a state that allows the controlling forces to be distinguished. Here we examine outcropping and subsurface Neogene deep-marine clastic systems that traversed the Hikurangi subduction margin via thrust-bounded trench-slope basins, providing an opportunity to examine the interplay of structural deformation and deep-marine sedimentation. Sedimentary logging and mapping of Miocene outcrops from the exhumed portion of the subduction wedge record heavily amalgamated, sand-rich lobe complexes, up to 200 m thick, which accumulated behind NE–SW-oriented growth structures. There was no significant deposition from low-density parts of the gravity flows in the basin center, although lateral fringes demonstrate fining and thinning indicative of deposits from low-density flows. Seismic data from the offshore portion of the margin show analogous lobate reflector geometries. These deposits accumulate into complexes up to 5 km wide, 8 km long, and 300 m thick, comparable in scale with the outcropping lobes on this margin. Mapping reveals lobe complexes that are vertically stacked behind thrusts. These results illustrate repeated trapping of the sandier parts of turbidity currents to form aggradational lobe complexes, with the finer-grained suspended load bypassing to areas downstream. However, the repeated development of lobes characterized by partial bypass implies that a feedback mechanism operates to perpetuate a partial confinement condition, via rejuvenation of accommodation. The mechanism proposed is a coupling of sediment loading and deformation rate, such that load-driven subsidence focuses stress on basin-bounding faults and perpetuates generation of accommodation in the basin, hence modulating tectonic forcing. Recognition of such a mechanism has implications for understanding the tectono-stratigraphic evolution of deep-marine fold and thrust belts and the distribution of resources within them

    Relativistic diffusion with friction on a pseudoriemannian manifold

    Full text link
    We study a relativistic diffusion equation on the Riemannian phase space defined by Franchi and Le Jan. We discuss stochastic Ito (Langevin) differential equations (defining the diffusion) as a perturbation by noise of the geodesic equation. We show that the expectation value of the angular momentum and the energy grow exponentially fast. We discuss drifts leading to an equilibrium. It is shown that the diffusion process corresponding to the Juettner or quantum equilibrium distributions has a bounded expectation value of angular momentum and energy. The energy and the angular momentum tend exponentially fast to their equilibrium values. As examples we discuss a particle in a plane fronted gravitational wave and a particle in de Sitter universe. It is shown that the relativistic diffusion of momentum in de Sitter space is the same as the relativistic diffusion on the Minkowski mass-shell with the temperature proportional to the de Sitter radius.Comment: the version published in CQ

    Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation

    Get PDF
    International audienceDiatoms are successful phytoplankton clades able to acclimate to changing environmental conditions, including e.g. variable light intensity. Diatoms are outstanding at dissipating light energy exceeding the maximum photosynthetic electron transfer (PET) capacity via the nonphotochemical quenching (NPQ) process. While the molecular effectors of NPQ as well as the involvement of the proton motive force (PMF) in its regulation are known, the regulators of the PET/PMF relationship remain unidentified in diatoms. We generated mutants of the H+^+ /K+^+ antiporter KEA3 in the model diatom Phaeodactylum tricornutumPhaeodactylum\ tricornutum. Loss of KEA3 activity affects the PET/PMF coupling and NPQ responses at the onset of illumination, during transients and in steady-state conditions. Thus, this antiporter is a main regulator of the PET/PMF coupling. Consistent with this conclusion, a parsimonious model including only two free components, KEA3 and the diadinoxanthin de-epoxidase, describes most of the feedback loops between PET and NPQ. This simple regulatory system allows for efficient responses to fast (minutes) or slow (e.g. diel) changes in light environment, thanks to the presence of a regulatory calcium ion (Ca2+^{2+} )-binding domain in KEA3 modulating its activity. This circuit is likely tuned by the NPQ-effector proteins, LHCXs, providing diatoms with the required flexibility to thrive in different ocean provinces

    Tomographic diffractive microscopy: towards highresolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples

    Get PDF
    Tomographic diffractive microscopy allows for imaging unlabeled specimens, with a better resolution than conventional microscopes, giving access to the index of refraction distribution within the specimen, and possibly at high speed. Principles of image formation and reconstruction are presented, and progresses towards realtime, three-dimensional acquisition, image reconstruction and final display, are discussed

    Finite-temperature dynamical magnetic susceptibility of quasi-one-dimensional frustrated spin-1/2 Heisenberg antiferromagnets

    Full text link
    We study the dynamical response of frustrated, quasi-one-dimensional spin-1/2 Heisenberg antiferromagnets at finite temperatures. We allow for the presence of a Dzyaloshinskii-Moriya interaction. We concentrate on a model of weakly coupled planes of anisotropic triangular lattices. Combining exact results for the dynamical response of one dimensional Heisenberg chains with a Random Phase Approximation (RPA) in the frustrated interchain couplings, we calculate the dynamical susceptibility in the disordered phase. We investigate the instability of the disordered phase to the formation of collective modes. We find a very weak instability to the formation of incommensurate magnetic order and determine the ordering temperature and wave vector. We also determine the effects of uniform magnetic fields on the ordering transition.Comment: 17 pages, 17 Postscript figure

    Systemic Administration of Avian Defensin 7: Distribution, Cellular Target, and Antibacterial Potential in Mice

    Get PDF
    Defensins are natural antimicrobial peptides. The avian beta-defensin AvBD7 isolated from the chicken bone marrow possess broad antibacterial spectrum and strong resistance to proteolysis. However, its ability to fight systemic infections of major concern for public health, such as salmonellosis, is unknown. As a first approach, fluorescence labeling of AvBD7 allowed to track its systemic distribution after intraperitoneal injection in mice using whole body live imaging. It was associated to peritoneal cells and to deeper organs such as the liver. In the next step, the use of labeled AvBD7 allowed to observe its interaction with murine macrophages in culture. After incubation, it was able to penetrate inside the cells through an endocytosis-like mechanism. Furthermore, natural AvBD7 contributed to the control of intracellular multiplication of a multidrug resistant Salmonella strain, after incubation with infected macrophages. Finally, administration in a model of systemic lethal Salmonella infection in mice led to significant improvement of mouse survival, consistently with significant reduction of the liver bacterial load. In conclusion, the results reveal a hitherto unknown intracellular antibacterial effect of AvBD7 in Salmonella target cells and support AvBD7 as a candidate of interest for the treatment of infectious diseases caused by multidrug-resistant pathogenic Enterobacteriaceae
    corecore