429 research outputs found
Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly.
Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein
Complementarity, quantum erasure and delayed choice with modified Mach-Zehnder interferometers
Often cited dictums in Quantum Mechanics include "observation disturbance
causes loss of interference" and "ignorance is interference". In this paper we
propose and describe a series of experiments with modified Mach-Zehnder
interferometers showing that one has to be careful when applying such dictums.
We are able to show that without interacting in any way with the light quantum
(or quanta) expected to behave "wave-like", interference fringes can be lost by
simply gaining (or having the potential to gain) the which-path knowledge.
Erasing this information may revive the interference fringes. Delayed choice
can be added, arriving to an experiment in line with Wheeler's original
proposal. We also show that ignorance is not always synonym with having the
interference fringes. The often-invoked "collapse of the wavefunction" is found
to be a non-necessary ingredient to describe our experiments.Comment: 8 pages, 3 figures; to appear in EPJ
An international comparative study of blood pressure in populations of European vs. African descent
Background: The consistent finding of higher prevalence of hypertension in US blacks compared
to whites has led to speculation that African-origin populations are particularly susceptible to this
condition. Large surveys now provide new information on this issue.
Methods: Using a standardized analysis strategy we examined prevalence estimates for 8 white
and 3 black populations (N = 85,000 participants).
Results: The range in hypertension prevalence was from 27 to 55% for whites and 14 to 44% for
blacks.
Conclusions: These data demonstrate that not only is there a wide variation in hypertension
prevalence among both racial groups, the rates among blacks are not unusually high when viewed
internationally. These data suggest that the impact of environmental factors among both
populations may have been under-appreciated
Synthetic Nanoparticles for Vaccines and Immunotherapy
The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such
as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the
science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Selective Remodeling: Refining Neural Connectivity at the Neuromuscular Junction
A primer on new research by Fuentes-Medel and colleagues explains the important role of non-neural cells in clearing neural debris, which is continuously produced during the normal remodeling processes that establish and maintain neural connectivity
The spatial structure of lithic landscapes : the late holocene record of east-central Argentina as a case study
Fil: Barrientos, Gustavo. División Antropología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Catella, Luciana. División Arqueología. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Oliva, Fernando. Centro Estudios Arqueológicos Regionales. Facultad de Humanidades y Artes. Universidad Nacional de Rosario; Argentin
- …
