141 research outputs found

    Multiplierz: An Extensible API Based Desktop Environment for Proteomics Data Analysis

    Get PDF
    BACKGROUND. Efficient analysis of results from mass spectrometry-based proteomics experiments requires access to disparate data types, including native mass spectrometry files, output from algorithms that assign peptide sequence to MS/MS spectra, and annotation for proteins and pathways from various database sources. Moreover, proteomics technologies and experimental methods are not yet standardized; hence a high degree of flexibility is necessary for efficient support of high- and low-throughput data analytic tasks. Development of a desktop environment that is sufficiently robust for deployment in data analytic pipelines, and simultaneously supports customization for programmers and non-programmers alike, has proven to be a significant challenge. RESULTS. We describe multiplierz, a flexible and open-source desktop environment for comprehensive proteomics data analysis. We use this framework to expose a prototype version of our recently proposed common API (mzAPI) designed for direct access to proprietary mass spectrometry files. In addition to routine data analytic tasks, multiplierz supports generation of information rich, portable spreadsheet-based reports. Moreover, multiplierz is designed around a "zero infrastructure" philosophy, meaning that it can be deployed by end users with little or no system administration support. Finally, access to multiplierz functionality is provided via high-level Python scripts, resulting in a fully extensible data analytic environment for rapid development of custom algorithms and deployment of high-throughput data pipelines. CONCLUSION. Collectively, mzAPI and multiplierz facilitate a wide range of data analysis tasks, spanning technology development to biological annotation, for mass spectrometry-based proteomics research.Dana-Farber Cancer Institute; National Human Genome Research Institute (P50HG004233); National Science Foundation Integrative Graduate Education and Research Traineeship grant (DGE-0654108

    Ultra-strong light–matter coupling for designer Reststrahlen band

    Get PDF
    The strength of the light–matter interaction depends on the number of dipoles that can couple with the photon trapped in an optical cavity. The coupling strength can thus be maximized by filling the entire cavity volume with an ensemble of interacting dipoles. In this work this is achieved by inserting a highly doped semiconductor layer in a subwavelength plasmonic resonator. In our system the ultra-strong light–matter coupling occurs between a collective electronic excitation and the cavity photon. The measured coupling strength is 73% of the matter excitation energy, the highest ever reported for a light–matter coupled system at room temperature. We experimentally and theoretically demonstrate that such an ultra-strong interaction modifies the optical properties on a very wide spectral range (20–250 meV), and results in the appearance of a photonic gap of 38 meV, independently of the light polarization and angle of incidence. Light–matter ultra-strong coupling can thus be exploited to conceive metasurfaces with an engineered reflectivity band

    Merging and scoring molecular interactions utilising existing community standards: tools, use-cases and a case study.

    No full text
    The evidence that two molecules interact in a living cell is often inferred from multiple different experiments. Experimental data is captured in multiple repositories, but there is no simple way to assess the evidence of an interaction occurring in a cellular environment. Merging and scoring of data are commonly required operations after querying for the details of specific molecular interactions, to remove redundancy and assess the strength of accompanying experimental evidence. We have developed both a merging algorithm and a scoring system for molecular interactions based on the proteomics standard initiative-molecular interaction standards. In this manuscript, we introduce these two algorithms and provide community access to the tool suite, describe examples of how these tools are useful to selectively present molecular interaction data and demonstrate a case where the algorithms were successfully used to identify a systematic error in an existing dataset

    Carbamazepine overdose after exposure to simethicone: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Carbamazepine is an anticonvulsant drug and is also used as a treatment for patients with manic-depressive illness, post-herpetic neuralgia or phantom limb pain. The drug itself has many drug interactions. Simethicone is an antifoaming agent and is reported to be an inert material with no known drug interaction with carbamazepine.</p> <p>Case presentation</p> <p>We present a case of a patient who was routinely using carbamazepine 400 mg three times per day and levetiracetam 500 mg twice daily, and experienced carbamazepine overdose after exposure to simethicone. After cessation of simethicone therapy normal drug levels of carbamazepine were obtained again with the standard dose of the drug. The mechanism of interaction is unknown but the risk of overdose should be considered when prescribing simethicone to a patient who is using carbamazepine.</p> <p>Conclusion</p> <p>Simethicone and carbamazepine, when taken together, may be a cause of carbamazepine toxicity. The risk of carbamazepine overdose should be considered when prescribing simethicone to a patient who is using carbamazepine.</p

    Deep strong light-matter coupling in plasmonic nanoparticle crystals

    Get PDF
    In the regime of deep strong light–matter coupling, the coupling strength exceeds the transition energies of the material, fundamentally changing its properties; for example, the ground state of the system contains virtual photons and the internal electromagnetic field gets redistributed by photon self-interaction. So far, no electronic excitation of a material has shown such strong coupling to free-space photons. Here we show that three-dimensional crystals of plasmonic nanoparticles can realize deep strong coupling under ambient conditions, if the particles are ten times larger than the interparticle gaps. The experimental Rabi frequencies (1.9 to 3.3 electronvolts) of face-centred cubic crystals of gold nanoparticles with diameters between 25 and 60 nanometres exceed their plasmon energy by up to 180 per cent. We show that the continuum of photons and plasmons hybridizes into polaritons that violate the rotating-wave approximation. The coupling leads to a breakdown of the Purcell effect—the increase of radiative damping through light–matter coupling—and increases the radiative polariton lifetime. The results indicate that metallic and semiconducting nanoparticles can be used as building blocks for an entire class of materials with extreme light–matter interaction, which will find application in nonlinear optics, the search for cooperative effects and ground states, polariton chemistry and quantum technology

    Aspergillus as a multi-purpose cell factory: current status and perspectives

    Get PDF
    Aspergilli have a long history in biotechnology as expression platforms for the production of food ingredients, pharmaceuticals and enzymes. The achievements made during the last years, however, have the potential to revolutionize Aspergillus biotechnology and to assure Aspergillus a dominant place among microbial cell factories. This mini-review will highlight most recent breakthroughs in fundamental and applied Aspergillus research with a focus on new molecular tools, techniques and products. New trends and concepts related to Aspergillus genomics and systems biology will be discussed as well as the challenges that have to be met to integrate omics data with metabolic engineering attempts

    Sudden cardiac death athletes: a systematic review

    Get PDF
    Previous events evidence that sudden cardiac death (SCD) in athletes is still a reality and it keeps challenging cardiologists. Considering the importance of SCD in athletes and the requisite for an update of this matter, we endeavored to describe SCD in athletes. The Medline (via PubMed) and SciELO databases were searched using the subject keywords "sudden death, athletes and mortality". The incidence of SCD is expected at one case for each 200,000 young athletes per year. Overall it is resulted of complex dealings of factors such as arrhythmogenic substrate, regulator and triggers factors. In great part of deaths caused by heart disease in athletes younger than 35 years old investigations evidence cardiac congenital abnormalities. Athletes above 35 years old possibly die due to impairments of coronary heart disease, frequently caused by atherosclerosis. Myocardial ischemia and myocardial infarction are responsible for the most cases of SCD above this age (80%). Pre-participatory athletes' evaluation helps to recognize situations that may put the athlete's life in risk including cardiovascular diseases. In summary, cardiologic examinations of athletes' pre-competition routine is an important way to minimize the risk of SCD

    Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19

    Get PDF
    : Pediatric Coronavirus Disease 2019 (pCOVID-19) is rarely severe; however, a minority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might develop multisystem inflammatory syndrome in children (MIS-C), with substantial morbidity. In this longitudinal multi-institutional study, we applied multi-omics (analysis of soluble biomarkers, proteomics, single-cell gene expression and immune repertoire analysis) to profile children with COVID-19 (n = 110) and MIS-C (n = 76), along with pediatric healthy controls (pHCs; n = 76). pCOVID-19 was characterized by robust type I interferon (IFN) responses, whereas prominent type II IFN-dependent and NF-κB-dependent signatures, matrisome activation and increased levels of circulating spike protein were detected in MIS-C, with no correlation with SARS-CoV-2 PCR status around the time of admission. Transient expansion of TRBV11-2 T cell clonotypes in MIS-C was associated with signatures of inflammation and T cell activation. The association of MIS-C with the combination of HLA A*02, B*35 and C*04 alleles suggests genetic susceptibility. MIS-C B cells showed higher mutation load than pCOVID-19 and pHC. These results identify distinct immunopathological signatures in pCOVID-19 and MIS-C that might help better define the pathophysiology of these disorders and guide therapy

    Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides

    Get PDF
    The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system
    corecore