1,965 research outputs found
Simulating realistic spatial structure for forest stands: a mimetic point process
The recent development of individual based and spatially explicit models raises the question of how to simulate relevant initial states for these models, and more particularly how to simulate realistic spatial structures. This is especially true for forest stand modelling. In this paper, we first review briefly the main simple steps in the simulation of forest stands with realistic spatial structure : (i) spatial structure analysis and ecological interpretation, (ii) expert simulation through classical point processes and ad hoc values of the parameters, and (iii) precise fitting of a spatial structure model using L(r) and L12(r) functions as criterion. We illustrate the advantages and limits of these steps on a real forest stand in mixed Oak - Scots pine forest near Orléans (France). We then propose a specific method - a mimetic point process - in order to simulate spatial structures similar to real patterns. This point process is based on a generalised Gibbs process, whose global cost function directly depends on the difference between the real measured values of L(r) and L12(r) functions, and the corresponding values computed on the simulated pattern at each iteration of the algorithm. We applied this method on a mixed Oak - Scots pine forest stand, and thus obtained an improved simulated pattern, that can be used as initial state for individual based forest growth models. We finally discuss the limits of this method, and its possible use to facilitate the valorisation of individual based models in the community of forest management. (Résumé d'auteur
Microscopic nanomechanical dissipation in gallium arsenide resonators
We report on a systematic study of nanomechanical dissipation in
high-frequency (approximatively 300 MHz) gallium arsenide optomechanical disk
resonators, in conditions where clamping and fluidic losses are negligible.
Phonon-phonon interactions are shown to contribute with a loss background
fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina
at the surface modifies the quality factor of resonators, pointing towards the
importance of surface dissipation. The temperature evolution is accurately
fitted by two-level systems models, showing that nanomechanical dissipation in
gallium arsenide resonators directly connects to their microscopic properties.
Two-level systems, notably at surfaces, appear to rule the damping and
fluctuations of such high-quality crystalline nanomechanical devices, at all
temperatures from 3 to 300K
Dual Signaling System with an Extended-Tetrathiafulvalene–Phenanthroline Dyad Acting as an Electrooptical Cation Chemosensor
A tetrathiafulvalene donor has been annulated to 2,3-di(1H-2-pyrrolyl)quinoxaline affording a new chemosensor 1, which shows a unique optical selectivity and reactivity for the fluoride ion over other anions in CH2Cl2 leading to a colorimetric response. Electrochemical polymerization of 1 occurred in the presence of fluoride
Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum
The diffraction spectrum of coherent waves scattered from fractal supports is
calculated exactly. The fractals considered are of the class generated
iteratively by successive dilations and translations, and include
generalizations of the Cantor set and Sierpinski carpet as special cases. Also
randomized versions of these fractals are treated. The general result is that
the diffraction intensities obey a strict recursion relation, and become
self-affine in the limit of large iteration number, with a self-affinity
exponent related directly to the fractal dimension of the scattering object.
Applications include neutron scattering, x-rays, optical diffraction, magnetic
resonance imaging, electron diffraction, and He scattering, which all display
the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at
http://www.fh.huji.ac.il/~dani
Internal Dust Correction Factors for Star Formation Rates Derived for Dusty \HII Regions and Starburst Galaxies
Star formation rates in galaxies are frequently estimated using the Balmer
line fluxes. However, these can be systematically underestimated because dust
competes for the absorption of Lyman continuum photons in the ionized gas. Here
we present theoretical correction factors in a simple analytic form. T These
factors scale as the product of the ionization parameter, , and the
nebular O/H abundance ratio, both of which can now be derived from the
observation of bright nebular line ratios. The correction factors are only
somewhat dependent upon the photoelectron production by grains, but are very
sensitive to the presence of complex PAH-like carbonaceous molecules in the
ionized gas, providing that these can survive in such an environment.Comment: 13 pages, 1 figures, Accepted for publication in ApJ. (Feb 1, 2003
Fission of a multiphase membrane tube
A common mechanism for intracellular transport is the use of controlled
deformations of the membrane to create spherical or tubular buds. While the
basic physical properties of homogeneous membranes are relatively well-known,
the effects of inhomogeneities within membranes are very much an active field
of study. Membrane domains enriched in certain lipids in particular are
attracting much attention, and in this Letter we investigate the effect of such
domains on the shape and fate of membrane tubes. Recent experiments have
demonstrated that forced lipid phase separation can trigger tube fission, and
we demonstrate how this can be understood purely from the difference in elastic
constants between the domains. Moreover, the proposed model predicts timescales
for fission that agree well with experimental findings
The Angular Momentum Evolution of Very Low Mass Stars
We present theoretical models of the angular momentum evolution of very low
mass stars (0.1 - 0.5 M_sun) and solar analogues (0.6 - 1.1 M_sun). We
investigate the effect of rotation on the effective temperature and luminosity
of these stars. We find that the decrease in T_eff and L can be significant at
the higher end of our mass range, but becomes negligible below 0.4 M_sun.
Formulae for relating T_eff to mass and v_rot are presented.
We compare our models to rotational data from young open clusters of
different ages to infer the rotational history of low mass stars, and the
dependence of initial conditions and rotational evolution on mass. We find that
the qualitative conclusions for stars below 0.6 M_sun do not depend on the
assumptions about internal angular momentum transport, which makes these low
mass stars ideal candidates for the study of the angular momentum loss law and
distribution of initial conditions. We find that neither models with solid body
nor differential rotation can simultaneously reproduce the observed stellar
spin down in the 0.6 to 1.1 M_sun mass range and for stars between 0.1 and 0.6
M_sun. The most likely explanation is that the saturation threshold drops more
steeply at low masses than would be predicted with a simple Rossby scaling. In
young clusters there is a systematic increase in the mean rotation rate with
decreased temperature below 3500 K (0.4 M_sun). This suggests either
inefficient angular momentum loss or mass-dependent initial conditions for
stars near the fully convective boundary. (abridged)Comment: To appear in the May 10, 2000 Ap
Imprinting the memory into paste and its visualization as crack patterns in drying process
In the drying process of paste, we can imprint into the paste the order how
it should be broken in the future. That is, if we vibrate the paste before it
is dried, it remembers the direction of the initial external vibration, and the
morphology of resultant crack patterns is determined solely by the memory of
the direction. The morphological phase diagram of crack patterns and the
rheological measurement of the paste show that this memory effect is induced by
the plasticity of paste.Comment: 4 pages, 3 figures, submitted to JPS
Teaching introductory undergraduate Physics using commercial video games
Commercial video games are increasingly using sophisticated physics
simulations to create a more immersive experience for players. This also makes
them a powerful tool for engaging students in learning physics. We provide some
examples to show how commercial off-the-shelf games can be used to teach
specific topics in introductory undergraduate physics. The examples are
selected from a course taught predominantly through the medium of commercial
video games.Comment: Accepted to Physics Education, Fig1 does not render properly in this
versio
- …
