1,310 research outputs found
Evaluation of problem-solving skills: what we really do
Abstract no. 1394published_or_final_versio
Motor traffic on urban minor and major roads: impacts on pedestrian and cyclist injuries
This article compares per-mile risks posed by motor traffic to pedestrians and cyclists on urban major and minor roads. Carrying out new analysis of police injury data from 2005-15, the paper finds that per billion vehicle miles, motor vehicles on minor roads create more pedestrian casualties than motor vehicles on major roads. Specifically, for KSI (killed or seriously injured) injuries the rate per billion motor vehicle miles is 17% higher on minor roads (47 versus 40 KSIs per billion vehicle miles), while for slight injuries it is 66% higher (188 vs. 123 slight injuries per billion vehicle miles). Examining the costs of injuries sustained, these are 7.4% higher for pedestrians per motor vehicle mile travelled on urban minor roads, compared to major roads. For cyclists, injury costs are slightly higher (4.2%) on major roads per mile driven, compared to minor roads. These results suggest that re-routing motor traffic to major roads in urban areas may reduce pedestrian casualties. However, if cyclist safety on major roads is not improved, shifting motor traffic from minor to major roads may result in unintended negative injury consequences for cyclists
Accurate structure factors from pseudopotential methods
Highly accurate experimental structure factors of silicon are available in
the literature, and these provide the ideal test for any \emph{ab initio}
method for the construction of the all-electron charge density. In a recent
paper [J. R. Trail and D. M. Bird, Phys. Rev. B {\bf 60}, 7863 (1999)] a method
has been developed for obtaining an accurate all-electron charge density from a
first principles pseudopotential calculation by reconstructing the core region
of an atom of choice. Here this method is applied to bulk silicon, and
structure factors are derived and compared with experimental and Full-potential
Linear Augmented Plane Wave results (FLAPW). We also compare with the result of
assuming the core region is spherically symmetric, and with the result of
constructing a charge density from the pseudo-valence density + frozen core
electrons. Neither of these approximations provide accurate charge densities.
The aspherical reconstruction is found to be as accurate as FLAPW results, and
reproduces the residual error between the FLAPW and experimental results.Comment: 6 Pages, 3 figure
Three dimensional tracking of exploratory behavior of barnacle cyprids using stereoscopy
Surface exploration is a key step in the colonization of surfaces by sessile marine biofoulers. As many biofouling organisms can delay settlement until a suitable surface is encountered, colonization can comprise surface exploration and intermittent swimming. As such, the process is best followed in three dimensions. Here we present a low-cost transportable stereoscopic system consisting of two consumer camcorders. We apply this novel apparatus to behavioral analysis of barnacle larvae (? 800 lm length) during surface exploration and extract and analyze the three-dimensional patterns of movement. The resolution of the system and the accuracy of position determination are characterized. As a first practical result, three-dimensional swimming trajectories of the cypris larva of the barnacle Semibalanus balanoides are recorded in the vicinity of a glass surface and close to PEG2000-OH and C11NMe3 +Cl- terminated self-assembled monolayers. Although less frequently used in biofouling experiments due to its short reproductive season, the selected model species [Marechal and Hellio (2011), Int Biodeterior Biodegrad, 65(1):92-101] has been used following a number of recent investigations on the settlement behavior on chemically different surfaces [Aldred et al. (2011), ACS Appl Mater Interfaces, 3(6):2085-2091]. Experiments were scheduled to match the availability of cyprids off the north east coast of England so that natural material could be used. In order to demonstrate the biological applicability of the system, analysis of parameters such as swimming direction, swimming velocity and swimming angle are performed.DFG/Ro 2524/2-2DFG/Ro 2497/7-2ONR/N00014-08-1-1116ONR/N00014-12-1-0498EC/FP7/2007-2013/23799
Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon
Motivated by the negative thermal expansion observed for silicon between 20 K
and 120 K, we present first an ab initio study of the volume dependence of
interatomic force constants, phonon frequencies of TA(X) and TA(L) modes, and
of the associated mode Gruneisen parameters. The influence of successive
nearest neighbors shells is analysed. Analytical formulas, taking into account
interactions up to second nearest neighbors, are developped for phonon
frequencies of TA(X) and TA(L) modes and the corresponding mode Gruneisen
parameters. We also analyze the volume and pressure dependence of various
thermodynamic properties (specific heat, bulk modulus, thermal expansion), and
point out the effect of the negative mode Gruneisen parameters of the acoustic
branches on these properties. Finally, we present the evolution of the mean
square atomic displacement and of the atomic temperature factor with the
temperature for different volumes, for which the anomalous effects are even
greater.Comment: 24 pages, Revtex 3.0, 11 figures, accepted for publication in Phys.
Rev.
Statistical Analysis Plan: Low Traffic Neighbourhoods in London: Interrupted time series analysis of sensor count data
This document is a statistical analysis plan for the NIHR-funded study into Low Traffic Neighbourhoods in London. It outlines the methodological approach (including data cleaning, anomaly detection, imputation and statistical analysis) associated with automated sensor data collected as part of the project. It gives particular detail to the interrupted time series method that, dependent on data availability and suitability, should form a significant part of the analysis of sensor data
A scanning electron microscopic study of hypercementosis
The purpose of this study was to evaluate morphological characteristics of teeth with hypercementosis that are relevant to endodontic practice. Twenty-eight extracted teeth with hypercementosis had their root apexes analyzed by scanning electron microscopy (SEM). The teeth were divided according to tooth groups and type of hypercementosis. The following aspects were examined under SEM: the contour and regularity of the root surface; presence of resorption; presence and number of apical foramina, and the diameter of the main foramen. The progression of club shape hypercementosis was directly associated with the presence of foramina and apical foramen obstruction. Cases of focal hypercementosis presented foramina on the surface, even when sidelong located in the root. Circular cementum hyperplasia form was present in 2 out of 3 residual roots, which was the highest proportion among the tooth types. The detection of a large number of foramina in the apical third of teeth with hypercementosis or even the possible existence of apical foramen obliteration contributes to understand the difficulties faced during endodontic treatment of these cases
Low Traffic Neighbourhoods in London: statistical analysis plan for examining impacts on driving times
- …
