56 research outputs found

    Biomechanical analysis of temporomandibular joint dynamics based on real-time magnetic resonance imaging

    Get PDF
    Aim: The traditional hinge axis theory of temporomandibular joint (TMJ) dynamics is increasingly being replaced by the theory of instantaneous centers of rotation (ICR). Typically, ICR determinations are based on theoretical calculations or three-dimensional approximations of finite element models. Materials and methods: With the advent of real-time magnetic resonance imaging (MRI), natural physiologic movements of the TMJ may be visualized with 15 frames per second. The present study employs real-time MRI to analyze the TMJ biomechanics of healthy volunteers during mandibular movements, with a special emphasis on horizontal condylar inclination (HCI) and ICR pathways. The Wilcoxon rank sum test was used to comparatively analyze ICR pathways of mandibular opening and closure. Results: Mean HCI was 34.8 degrees (± 11.3 degrees) and mean mandibular rotation was 26.6 degrees (± 7.2 degrees). Within a mandibular motion of 10 to 30 degrees, the resulting x- and y-translation during opening and closure of the mandible differed significantly (10 to 20 degrees, x: P = 0.02 and y: P 30 degrees showed no significant differences in x- and y-translation. Near occlusion movements differed only for y-translation (P < 0.01). Conclusion: Real-time MRI facilitates the direct recording of TMJ structures during physiologic mandibular movements. The present findings support the theory of ICR. Statistics confirmed that opening and closure of the mandible follow different ICR pathways, which might be due to muscular activity discrepancies during different movement directions. ICR pathways were similar within maximum interincisal distance (MID) and near occlusion (NO), which might be explained by limited extensibility of tissue fibers (MID) and tooth contact (NO), respectively

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    Resonance trapping and saturation of decay widths

    Full text link
    Resonance trapping appears in open many-particle quantum systems at high level density when the coupling to the continuum of decay channels reaches a critical strength. Here a reorganization of the system takes place and a separation of different time scales appears. We investigate it under the influence of additional weakly coupled channels as well as by taking into account the real part of the coupling term between system and continuum. We observe a saturation of the mean width of the trapped states. Also the decay rates saturate as a function of the coupling strength. The mechanism of the saturation is studied in detail. In any case, the critical region of reorganization is enlarged. When the transmission coefficients for the different channels are different, the width distribution is broadened as compared to a chi_K^2 distribution where K is the number of channels. Resonance trapping takes place before the broad state overlaps regions beyond the extension of the spectrum of the closed system.Comment: 18 pages, 8 figures, accepted by Phys. Rev.

    Femtosecond induced transparency and absorption in the extreme ultraviolet by coherent coupling of the He 2s2p (1P0) and 2p2 (1Se) double excitation states with 800 nm light

    Get PDF
    Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p (1Po) and 2p2 (1Se) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s2 \to 2s2p transition at 60.15 eV reveals the formation of an Autler-Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively.Comment: 18 pages, 5 figure

    Reconstruction and control of a time-dependent two-electron wave packet

    Full text link
    The concerted motion of two or more bound electrons governs atomic1 and molecular2,3 non-equilibrium processes including chemical reactions, and hence there is much interest in developing a detailed understanding of such electron dynamics in the quantum regime. However, there is no exact solution for the quantumthree-body problem, and as a result even the minimal system of two active electrons and a nucleus is analytically intractable4. This makes experimental measurements of the dynamics of two bound and correlated electrons, as found in the helium atom, an attractive prospect.However, although the motion of single active electrons and holes has been observed with attosecond time resolution5-7, comparable experiments on two-electron motion have so far remained out of reach. Here we showthat a correlated two-electron wave packet can be reconstructed froma 1.2-femtosecondquantumbeatamong low-lying doubly excited states in helium.The beat appears in attosecond transient-absorption spectra5,7-9 measured with unprecedentedly high spectral resolution and in the presence of an intensity-tunable visible laser field.Wetune the coupling10-12 between the two low-lying quantum states by adjusting the visible laser intensity, and use the Fano resonance as a phase-sensitive quantum interferometer13 to achieve coherent control of the two correlated electrons. Given the excellent agreement with large-scalequantum-mechanical calculations for thehelium atom, we anticipate thatmultidimensional spectroscopy experiments of the type we report here will provide benchmark data for testing fundamental few-body quantumdynamics theory in more complex systems. Theymight also provide a route to the site-specificmeasurement and control of metastable electronic transition states that are at the heart of fundamental chemical reactionsWe thank E. Lindroth for calculating the dipole moment (2p2|r|sp2,3+), and also A. Voitkiv, Z.-H. Loh, and R. Moshammer for helpful discussions. We acknowledge financial support by the Max-Planck Research Group Program of the Max-Planck Gesellschaft (MPG) and the European COST Action CM1204 XLIC. L. A. and F. M. acknowledge computer time from the CCC-UAM and Mare Nostrum supercomputer centers and financial support by the European Research Council under the ERC Advanced Grant no. 290853 XCHEM, the Ministerio de Economía y Competitividad projects FIS2010-15127, FIS2013-42002-R and ERA-Chemistry PIM2010EEC-00751, and the European grant MC-ITN CORIN

    Tinnitus with Temporomandibular Joint Disorders: A Specific Entity of Tinnitus Patients?

    Get PDF
    Objective. Tinnitus is frequently associated with temporomandibular joint (TMJ) dysfunction. However, the nature of the relationship is not fully understood. Here the authors compared 30 patients with a confirmed diagnosis of temporomandibular joint dysfunction and tinnitus to a group of 61 patients with tinnitus but without any subjective complaints of TMJ dysfunction with respect to clinical and demographic characteristics. Study Design. Case-control study. Setting. Tertiary referral center. Subjects. Tinnitus patients with and without TMJ dysfunction presenting at the Department of Prosthetic Dentistry and the Tinnitus Clinic at the University of Regensburg. Results. Tinnitus patients with TMJ disorder had better hearing function (P < .0005), lower age (P = .001), and lower age at tinnitus onset (P = .002) and were more frequently female (P = .003). Their subjectively perceived tinnitus loudness was lower (P = .01), and more of them could modulate their tinnitus by jaw or neck movements (P = .001). Conclusion. Classical risk factors for tinnitus (age, male gender, hearing loss) are less relevant in tinnitus patients with TMJ disorder, suggesting a causal role of TMJ pathology in the generation and maintenance of tinnitus. Based on this finding, treatment of TMJ disorder may represent a causally oriented treatment strategy for tinnitus

    Etablierung eines strukturierten Doktoranden-Seminars im Zentrum ZMK der UMG

    No full text

    Darstellung der Kiefergelenksfunktion mittels Echtzeit-MRT.

    No full text
    Bernerwappen auf der TitelseiteTitelseite in Rot- und Schwarzdruc
    corecore